# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import torch _EPS4 = np.finfo(np.float32).eps * 4.0 _FLOAT_EPS = np.finfo(np.float32).eps # PyTorch-backed implementations def qinv(q): assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' mask = torch.ones_like(q) mask[..., 1:] = -mask[..., 1:] return q * mask def qinv_np(q): assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' return qinv(torch.from_numpy(q).float()).numpy() def qnormalize(q): assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' return q / torch.norm(q, dim=-1, keepdim=True) def qmul(q, r): """ Multiply quaternion(s) q with quaternion(s) r. Expects two equally-sized tensors of shape (*, 4), where * denotes any number of dimensions. Returns q*r as a tensor of shape (*, 4). """ assert q.shape[-1] == 4 assert r.shape[-1] == 4 original_shape = q.shape # Compute outer product terms = torch.bmm(r.view(-1, 4, 1), q.view(-1, 1, 4)) w = terms[:, 0, 0] - terms[:, 1, 1] - terms[:, 2, 2] - terms[:, 3, 3] x = terms[:, 0, 1] + terms[:, 1, 0] - terms[:, 2, 3] + terms[:, 3, 2] y = terms[:, 0, 2] + terms[:, 1, 3] + terms[:, 2, 0] - terms[:, 3, 1] z = terms[:, 0, 3] - terms[:, 1, 2] + terms[:, 2, 1] + terms[:, 3, 0] return torch.stack((w, x, y, z), dim=1).view(original_shape) def qrot(q, v): """ Rotate vector(s) v about the rotation described by quaternion(s) q. Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, where * denotes any number of dimensions. Returns a tensor of shape (*, 3). """ assert q.shape[-1] == 4 assert v.shape[-1] == 3 assert q.shape[:-1] == v.shape[:-1] original_shape = list(v.shape) # print(q.shape) q = q.contiguous().view(-1, 4) v = v.contiguous().view(-1, 3) qvec = q[:, 1:] uv = torch.cross(qvec, v, dim=1) uuv = torch.cross(qvec, uv, dim=1) return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape) def qeuler(q, order, epsilon=0, deg=True): """ Convert quaternion(s) q to Euler angles. Expects a tensor of shape (*, 4), where * denotes any number of dimensions. Returns a tensor of shape (*, 3). """ assert q.shape[-1] == 4 original_shape = list(q.shape) original_shape[-1] = 3 q = q.view(-1, 4) q0 = q[:, 0] q1 = q[:, 1] q2 = q[:, 2] q3 = q[:, 3] if order == 'xyz': x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) y = torch.asin( torch.clamp(2 * (q1 * q3 + q0 * q2), -1 + epsilon, 1 - epsilon)) z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) elif order == 'yzx': x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3)) z = torch.asin( torch.clamp(2 * (q1 * q2 + q0 * q3), -1 + epsilon, 1 - epsilon)) elif order == 'zxy': x = torch.asin( torch.clamp(2 * (q0 * q1 + q2 * q3), -1 + epsilon, 1 - epsilon)) y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q1 * q1 + q3 * q3)) elif order == 'xzy': x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) y = torch.atan2(2 * (q0 * q2 + q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3)) z = torch.asin( torch.clamp(2 * (q0 * q3 - q1 * q2), -1 + epsilon, 1 - epsilon)) elif order == 'yxz': x = torch.asin( torch.clamp(2 * (q0 * q1 - q2 * q3), -1 + epsilon, 1 - epsilon)) y = torch.atan2(2 * (q1 * q3 + q0 * q2), 1 - 2 * (q1 * q1 + q2 * q2)) z = torch.atan2(2 * (q1 * q2 + q0 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) elif order == 'zyx': x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) y = torch.asin( torch.clamp(2 * (q0 * q2 - q1 * q3), -1 + epsilon, 1 - epsilon)) z = torch.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) else: raise if deg: return torch.stack((x, y, z), dim=1).view(original_shape) * 180 / np.pi else: return torch.stack((x, y, z), dim=1).view(original_shape) # Numpy-backed implementations def qmul_np(q, r): q = torch.from_numpy(q).contiguous().float() r = torch.from_numpy(r).contiguous().float() return qmul(q, r).numpy() def qrot_np(q, v): q = torch.from_numpy(q).contiguous().float() v = torch.from_numpy(v).contiguous().float() return qrot(q, v).numpy() def qeuler_np(q, order, epsilon=0, use_gpu=False): if use_gpu: q = torch.from_numpy(q).cuda().float() return qeuler(q, order, epsilon).cpu().numpy() else: q = torch.from_numpy(q).contiguous().float() return qeuler(q, order, epsilon).numpy() def qfix(q): """ Enforce quaternion continuity across the time dimension by selecting the representation (q or -q) with minimal distance (or, equivalently, maximal dot product) between two consecutive frames. Expects a tensor of shape (L, J, 4), where L is the sequence length and J is the number of joints. Returns a tensor of the same shape. """ assert len(q.shape) == 3 assert q.shape[-1] == 4 result = q.copy() dot_products = np.sum(q[1:] * q[:-1], axis=2) mask = dot_products < 0 mask = (np.cumsum(mask, axis=0) % 2).astype(bool) result[1:][mask] *= -1 return result def euler2quat(e, order, deg=True): """ Convert Euler angles to quaternions. """ assert e.shape[-1] == 3 original_shape = list(e.shape) original_shape[-1] = 4 e = e.view(-1, 3) # if euler angles in degrees if deg: e = e * np.pi / 180. x = e[:, 0] y = e[:, 1] z = e[:, 2] rx = torch.stack((torch.cos(x / 2), torch.sin( x / 2), torch.zeros_like(x), torch.zeros_like(x)), dim=1) ry = torch.stack((torch.cos(y / 2), torch.zeros_like(y), torch.sin( y / 2), torch.zeros_like(y)), dim=1) rz = torch.stack((torch.cos( z / 2), torch.zeros_like(z), torch.zeros_like(z), torch.sin(z / 2)), dim=1) result = None for coord in order: if coord == 'x': r = rx elif coord == 'y': r = ry elif coord == 'z': r = rz else: raise if result is None: result = r else: result = qmul(result, r) # Reverse antipodal representation to have a non-negative "w" if order in ['xyz', 'yzx', 'zxy']: result *= -1 return result.view(original_shape) def expmap_to_quaternion(e): """ Convert axis-angle rotations (aka exponential maps) to quaternions. Stable formula from "Practical Parameterization of Rotations Using the Exponential Map". Expects a tensor of shape (*, 3), where * denotes any number of dimensions. Returns a tensor of shape (*, 4). """ assert e.shape[-1] == 3 original_shape = list(e.shape) original_shape[-1] = 4 e = e.reshape(-1, 3) theta = np.linalg.norm(e, axis=1).reshape(-1, 1) w = np.cos(0.5 * theta).reshape(-1, 1) xyz = 0.5 * np.sinc(0.5 * theta / np.pi) * e return np.concatenate((w, xyz), axis=1).reshape(original_shape) def euler_to_quaternion(e, order): """ Convert Euler angles to quaternions. """ assert e.shape[-1] == 3 original_shape = list(e.shape) original_shape[-1] = 4 e = e.reshape(-1, 3) x = e[:, 0] y = e[:, 1] z = e[:, 2] rx = np.stack( (np.cos(x / 2), np.sin(x / 2), np.zeros_like(x), np.zeros_like(x)), axis=1) ry = np.stack( (np.cos(y / 2), np.zeros_like(y), np.sin(y / 2), np.zeros_like(y)), axis=1) rz = np.stack( (np.cos(z / 2), np.zeros_like(z), np.zeros_like(z), np.sin(z / 2)), axis=1) result = None for coord in order: if coord == 'x': r = rx elif coord == 'y': r = ry elif coord == 'z': r = rz else: raise if result is None: result = r else: result = qmul_np(result, r) # Reverse antipodal representation to have a non-negative "w" if order in ['xyz', 'yzx', 'zxy']: result *= -1 return result.reshape(original_shape) def quaternion_to_matrix(quaternions): """ Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). """ r, i, j, k = torch.unbind(quaternions, -1) two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def quaternion_to_matrix_np(quaternions): q = torch.from_numpy(quaternions).contiguous().float() return quaternion_to_matrix(q).numpy() def quaternion_to_cont6d_np(quaternions): rotation_mat = quaternion_to_matrix_np(quaternions) cont_6d = np.concatenate([rotation_mat[..., 0], rotation_mat[..., 1]], axis=-1) return cont_6d def quaternion_to_cont6d(quaternions): rotation_mat = quaternion_to_matrix(quaternions) cont_6d = torch.cat([rotation_mat[..., 0], rotation_mat[..., 1]], dim=-1) return cont_6d def cont6d_to_matrix(cont6d): assert cont6d.shape[-1] == 6, "The last dimension must be 6" x_raw = cont6d[..., 0:3] y_raw = cont6d[..., 3:6] x = x_raw / torch.norm(x_raw, dim=-1, keepdim=True) z = torch.cross(x, y_raw, dim=-1) z = z / torch.norm(z, dim=-1, keepdim=True) y = torch.cross(z, x, dim=-1) x = x[..., None] y = y[..., None] z = z[..., None] mat = torch.cat([x, y, z], dim=-1) return mat def cont6d_to_matrix_np(cont6d): q = torch.from_numpy(cont6d).contiguous().float() return cont6d_to_matrix(q).numpy() def qpow(q0, t, dtype=torch.float): ''' q0 : tensor of quaternions t: tensor of powers ''' q0 = qnormalize(q0) theta0 = torch.acos(q0[..., 0]) # if theta0 is close to zero, add epsilon to avoid NaNs mask = (theta0 <= 10e-10) * (theta0 >= -10e-10) theta0 = (1 - mask) * theta0 + mask * 10e-10 v0 = q0[..., 1:] / torch.sin(theta0).view(-1, 1) if isinstance(t, torch.Tensor): q = torch.zeros(t.shape + q0.shape) theta = t.view(-1, 1) * theta0.view(1, -1) else: # if t is a number q = torch.zeros(q0.shape) theta = t * theta0 q[..., 0] = torch.cos(theta) q[..., 1:] = v0 * torch.sin(theta).unsqueeze(-1) return q.to(dtype) def qslerp(q0, q1, t): ''' q0: starting quaternion q1: ending quaternion t: array of points along the way Returns: Tensor of Slerps: t.shape + q0.shape ''' q0 = qnormalize(q0) q1 = qnormalize(q1) q_ = qpow(qmul(q1, qinv(q0)), t) qq = q0.contiguous().view(torch.Size([1] * len(t.shape)) + q0.shape) qq = qq.expand(t.shape + q0.shape).contiguous() return qmul(q_, qq) def qbetween(v0, v1): ''' find the quaternion used to rotate v0 to v1 ''' assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)' assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)' v = torch.cross(v0, v1) t = (v0**2).sum(dim=-1, keepdim=True) * (v1**2) t = t.sum(dim=-1, keepdim=True) w = torch.sqrt(t) + (v0 * v1).sum(dim=-1, keepdim=True) return qnormalize(torch.cat([w, v], dim=-1)) def qbetween_np(v0, v1): ''' find the quaternion used to rotate v0 to v1 ''' assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)' assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)' v0 = torch.from_numpy(v0).float() v1 = torch.from_numpy(v1).float() return qbetween(v0, v1).numpy() def lerp(p0, p1, t): if not isinstance(t, torch.Tensor): t = torch.Tensor([t]) new_shape = t.shape + p0.shape new_view_t = t.shape + torch.Size([1] * len(p0.shape)) new_view_p = torch.Size([1] * len(t.shape)) + p0.shape p0 = p0.view(new_view_p).expand(new_shape) p1 = p1.view(new_view_p).expand(new_shape) t = t.view(new_view_t).expand(new_shape) return p0 + t * (p1 - p0)