import gradio as gr import requests import pandas as pd import plotly.graph_objs as go from transformers import pipeline # Load GPT-2 model (adjust if you're using a different supported model) chatgpt = pipeline("text-generation", model="gpt2") # Function to fetch and process data from GPT model def fetch_and_process_data(prompt): response = chatgpt(prompt, max_length=200, do_sample=True)[0]['generated_text'] return response # Function to fetch historical price data from CoinGecko def fetch_historical_data(coin_id, from_timestamp, to_timestamp): url = f"https://api.coingecko.com/api/v3/coins/{coin_id}/market_chart/range?vs_currency=usd&from={from_timestamp}&to={to_timestamp}" response = requests.get(url) if response.status_code == 200: data = response.json() prices = data['prices'] return prices else: return f"Error fetching historical data for {coin_id}" # Function to convert dates to timestamps def date_to_timestamp(date_str): return int(pd.Timestamp(date_str).timestamp()) # Function to plot historical prices using Plotly def plot_historical_prices(coin_name, from_date, to_date): from_timestamp = date_to_timestamp(from_date) to_timestamp = date_to_timestamp(to_date) prices = fetch_historical_data(coin_name, from_timestamp, to_timestamp) if isinstance(prices, str): # In case of error return prices df = pd.DataFrame(prices, columns=['timestamp', 'price']) df['date'] = pd.to_datetime(df['timestamp'], unit='ms') fig = go.Figure() fig.add_trace(go.Scatter(x=df['date'], y=df['price'], mode='lines', name=coin_name)) fig.update_layout(title=f'{coin_name.capitalize()} Prices from {from_date} to {to_date}', xaxis_title='Date', yaxis_title='Price (USD)') # Return the plot as an HTML div element return fig.to_html() # Top 100 Cryptocurrencies (by CoinGecko IDs) top_100_cryptos = [ 'bitcoin', 'ethereum', 'binancecoin', 'ripple', 'solana', 'cardano', 'dogecoin', 'polygon', 'polkadot', 'tron', # Add more top coins as necessary ] # Function to display both ChatGPT response and price chart def combined_analysis(prompt, coin_name, from_date, to_date): # Fetch ChatGPT response chatgpt_response = fetch_and_process_data(prompt) # Fetch and plot historical price data price_chart = plot_historical_prices(coin_name, from_date, to_date) return chatgpt_response, price_chart # Create Gradio Interface interface = gr.Interface( fn=combined_analysis, inputs=[ gr.Textbox(label="Enter a prompt for ChatGPT"), gr.Dropdown(choices=top_100_cryptos, label="Select Cryptocurrency"), gr.Textbox(value="2024-01-01", label="From Date (YYYY-MM-DD)"), gr.Textbox(value="2025-12-31", label="To Date (YYYY-MM-DD)") ], outputs=[ gr.Textbox(label="ChatGPT Response"), gr.HTML(label="Cryptocurrency Price Chart") ], title="ChatGPT and Cryptocurrency Analysis", description="This tool provides real-time cryptocurrency analysis and allows you to interact with ChatGPT for insights." ) # Launch Gradio app interface.launch(server_name="0.0.0.0")