import os import sys import base64 from io import BytesIO sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import torch from torch import nn from fastapi import FastAPI import numpy as np from PIL import Image #import clip from dalle.models import Dalle import logging from dalle.utils.utils import clip_score, download print("Loading models...") app = FastAPI() # url = "https://arena.kakaocdn.net/brainrepo/models/minDALL-E/57b008f02ceaa02b779c8b7463143315/1.3B.tar.gz" # root = os.path.expanduser("~/.cache/minDALLE") # filename = os.path.basename(url) # pathname = filename[: -len(".tar.gz")] # download_target = os.path.join(root, filename) # result_path = os.path.join(root, pathname) # if not os.path.exists(result_path): # result_path = download(url, root) device = "cuda" if torch.cuda.is_available() else "cpu" model = Dalle.from_pretrained("minDALL-E/1.3B") # This will automatically download the pretrained model. model.to(device=device) # ----------------------------------------------------------- state_dict_ = torch.load('last.ckpt', map_location='cpu') vqgan_stage_dict = model.stage1.state_dict() for name, param in state_dict_['state_dict'].items(): if name not in model.stage1.state_dict().keys(): continue if isinstance(param, nn.parameter.Parameter): param = param.data vqgan_stage_dict[name].copy_(param) model.stage1.load_state_dict(vqgan_stage_dict) # --------------------------------------------------------- # state_dict_dalle = torch.load('dalle_last.ckpt', map_location='cpu') # dalle_stage_dict = model.stage2.state_dict() # # for name, param in state_dict_dalle['state_dict'].items(): # if name[6:] not in model.stage2.state_dict().keys(): # print(name) # continue # if isinstance(param, nn.parameter.Parameter): # param = param.data # dalle_stage_dict[name[6:]].copy_(param) # # model.stage2.load_state_dict(dalle_stage_dict) # model_clip, preprocess_clip = clip.load("ViT-B/32", device=device) # model_clip.to(device=device) print("Models loaded !") @app.get("/") def read_root(): return {"minDALL-E!"} @app.get("/{generate}") def generate(prompt): images = sample(prompt) images = [to_base64(image) for image in images] return {"images": images} def sample(prompt): # Sampling logging.info("starting sampling") images = ( model.sampling(prompt=prompt, top_k=96, top_p=None, softmax_temperature=1.0, num_candidates=9, device=device) .cpu() .numpy() ) logging.info("sampling succeeded") images = np.transpose(images, (0, 2, 3, 1)) # CLIP Re-ranking # rank = clip_score( # prompt=prompt, images=images, model_clip=model_clip, preprocess_clip=preprocess_clip, device=device # ) # images = images[rank] pil_images = [] for i in range(len(images)): im = Image.fromarray((images[i] * 255).astype(np.uint8)) pil_images.append(im) return pil_images def to_base64(pil_image): buffered = BytesIO() pil_image.save(buffered, format="JPEG") return base64.b64encode(buffered.getvalue())