import os import tempfile import re import librosa import torch import json import numpy as np from transformers import Wav2Vec2ForCTC, AutoProcessor from huggingface_hub import hf_hub_download from torchaudio.models.decoder import ctc_decoder uroman_dir = "uroman" assert os.path.exists(uroman_dir) UROMAN_PL = os.path.join(uroman_dir, "bin", "uroman.pl") ASR_SAMPLING_RATE = 16_000 WORD_SCORE_DEFAULT_IF_LM = -0.18 WORD_SCORE_DEFAULT_IF_NOLM = -3.5 LM_SCORE_DEFAULT = 1.48 MODEL_ID = "upload/mms_zs" processor = AutoProcessor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) token_file = "upload/mms_zs/tokens.txt" def error_check_file(filepath): if not isinstance(filepath, str): return "Expected file to be of type 'str'. Instead got {}".format( type(filepath) ) if not os.path.exists(filepath): return "Input file '{}' doesn't exists".format(type(filepath)) def norm_uroman(text): text = text.lower() text = text.replace("’", "'") text = re.sub("([^a-z' ])", " ", text) text = re.sub(" +", " ", text) return text.strip() def uromanize(words): iso = "xxx" with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2: with open(tf.name, "w") as f: f.write("\n".join(words)) cmd = f"perl " + UROMAN_PL cmd += f" -l {iso} " cmd += f" < {tf.name} > {tf2.name}" os.system(cmd) lexicon = {} with open(tf2.name) as f: for idx, line in enumerate(f): if not line.strip(): continue line = re.sub(r"\s+", " ", norm_uroman(line)).strip() lexicon[words[idx]] = " ".join(line) + " |" return lexicon def load_lexicon(filepath): words = {} with open(filepath) as f: for line in f: line = line.strip() # ignore invalid words. if not line or " " in line or len(line) > 50: continue for w in line.split(): words[w.lower()] = True return uromanize(list(words.keys())) def process( audio_data, words_file, lm_path=None, wscore=None, lmscore=None, wscore_usedefault=True, lmscore_usedefault=True, ): if isinstance(audio_data, tuple): # microphone sr, audio_samples = audio_data audio_samples = (audio_samples / 32768.0).astype(float) assert sr == ASR_SAMPLING_RATE, "Invalid sampling rate" else: # file upload assert isinstance(audio_data, str) audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0] # print(audio_samples[:10]) # print("I'm here 102") print("len audio_samples", len(audio_samples)) lang_code = "eng" # processor.tokenizer.set_target_lang(lang_code) # print("I'm here 107") # model.load_adapter(lang_code) # print("I'm here 109") inputs = processor( audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt" ) # print("I'm here 106") print("inputs type", type(inputs)) # print("inputs size", inputs.size) # set device if torch.cuda.is_available(): device = torch.device("cuda") elif ( hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built() ): device = torch.device("mps") else: device = torch.device("cpu") device = torch.device("cpu") model.to(device) inputs = inputs.to(device) # print("I'm here 122") with torch.no_grad(): outputs = model(**inputs).logits # Setup lexicon and decoder # print("before uroman") lexicon = load_lexicon(words_file) # print("after uroman") # print("len lexicon", len(lexicon)) with tempfile.NamedTemporaryFile() as lexicon_file: print("lm_path before", lm_path) if lm_path is not None and not lm_path.strip(): lm_path = None print("lm_path after", lm_path) with open(lexicon_file.name, "w") as f: idx = 10 for word, spelling in lexicon.items(): f.write(word + " " + spelling + "\n") if idx % 250 == 0: print(word, spelling, flush=True) idx += 1 if wscore_usedefault: wscore = ( WORD_SCORE_DEFAULT_IF_LM if lm_path is not None else WORD_SCORE_DEFAULT_IF_NOLM ) if lmscore_usedefault: lmscore = LM_SCORE_DEFAULT if lm_path is not None else 0 print("using word score", wscore) print("using lm score", lmscore) beam_search_decoder = ctc_decoder( lexicon=lexicon_file.name, tokens=token_file, lm=lm_path, nbest=1, beam_size=500, beam_size_token=50, lm_weight=lmscore, word_score=wscore, sil_score=0, blank_token="", ) beam_search_result = beam_search_decoder(outputs.to("cpu")) transcription = " ".join(beam_search_result[0][0].words).strip() return transcription ZS_EXAMPLES = [["upload/english.mp3", "upload/words_top10k.txt"]] print(process("upload/english.mp3", "upload/words_top10k.txt"))