# from helper import load_image_from_url, render_results_in_image # from helper import ignore_warnings # ignore_warnings() from transformers import pipeline from transformers.utils import logging logging.set_verbosity_error() od_pipe = pipeline("object-detection", "facebook/detr-resnet-50") from PIL import Image import os import gradio as gr def get_pipeline_prediction(pil_image): pipeline_output = od_pipe(pil_image) processed_image = render_results_in_image(pil_image, pipeline_output) return processed_image demo = gr.Interface(fn=get_pipeline_prediction,inputs=gr.Image(label="Input image", type="pil"), outputs=gr.Image(label="Output image with predicted instances", type="pil") ) demo.launch(share=True)