import gradio as gr from diffusers import DiffusionPipeline import spaces import torch from concurrent.futures import ProcessPoolExecutor from huggingface_hub import hf_hub_download dev_model = "black-forest-labs/FLUX.1-dev" schnell_model = "black-forest-labs/FLUX.1-schnell" device = "cuda" if torch.cuda.is_available() else "cpu" repo_name = "ByteDance/Hyper-SD" ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors" hyper_lora = hf_hub_download(repo_name, ckpt_name) repo_name = "alimama-creative/FLUX.1-Turbo-Alpha" ckpt_name = "diffusion_pytorch_model.safetensors" turbo_lora = hf_hub_download(repo_name, ckpt_name) pipe_dev = DiffusionPipeline.from_pretrained(dev_model, torch_dtype=torch.bfloat16).to("cuda") pipe_schnell = DiffusionPipeline.from_pretrained( schnell_model, text_encoder=pipe_dev.text_encoder, text_encoder_2=pipe_dev.text_encoder_2, tokenizer=pipe_dev.tokenizer, tokenizer_2=pipe_dev.tokenizer_2, torch_dtype=torch.bfloat16 ) @spaces.GPU(duration=90) def run_parallel_models(prompt, progress=gr.Progress(track_tqdm=True)): pipe_dev.load_lora_weights(hyper_lora) image = pipe_dev(prompt, num_inference_steps=8, joint_attention_kwargs={"scale": 0.125}).images[0] pipe_dev.unload_lora_weights() yield image, gr.update(), gr.update() pipe_dev.load_lora_weights(turbo_lora) image = pipe_dev(prompt, num_inference_steps=8).images[0] yield gr.update(), image, gr.update() pipe_dev.unload_lora_weights() pipe_dev.to("cpu") pipe_schnell.to("cuda") image = pipe_schnell(prompt, num_inference_steps=4).images[0] yield gr.update(), gr.update(), image #run_parallel_models.zerogpu = True css = ''' #gen_btn{height: 100%} #gen_column{align-self: stretch} ''' with gr.Blocks(css=css) as demo: gr.Markdown("# Low Step Flux Comparison") gr.Markdown("Compare the quality (not the speed) of FLUX Schnell (4 steps), FLUX.1[dev] HyperFLUX (8 steps), FLUX.1[dev]-Turbo-Alpha (8 steps). It runs a bit slow as it's inferencing the three models.") with gr.Row(): with gr.Column(scale=2): prompt = gr.Textbox(label="Prompt") with gr.Column(scale=1, min_width=120, elem_id="gen_column"): submit = gr.Button("Run", elem_id="gen_btn") with gr.Row(): hyper = gr.Image(label="FLUX.1[dev] HyperFLUX (8 steps)") turbo = gr.Image(label="FLUX.1[dev]-Turbo-Alpha (8 steps)") schnell = gr.Image(label="FLUX Schnell (4 steps)") gr.Examples( examples=[ ["the spirit of a Tamagotchi wandering in the city of Vienna"], ["a photo of a lavender cat"], ["a tiny astronaut hatching from an egg on the moon"], ["a delicious ceviche cheesecake slice"], ["an insect robot preparing a delicious meal"], ["a Charmander fine dining with a view to la Sagrada Família"]], fn=run_parallel_models, inputs=[prompt], outputs=[hyper, turbo, schnell], cache_examples="lazy" ) gr.on( triggers=[submit.click, prompt.submit], fn=run_parallel_models, inputs=[prompt], outputs=[hyper, turbo, schnell] ) demo.launch()