import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch from typing import List, Dict from datetime import datetime class MissionContext: def __init__(self): self.mission_counter = 1 self.current_objectives = {} self.conversation_history = [] def add_to_history(self, role: str, content: str): self.conversation_history.append({ "role": role, "content": content, "timestamp": datetime.now().isoformat() }) # Keep only last 5 messages for context if len(self.conversation_history) > 5: self.conversation_history.pop(0) class MissionGenerator: def __init__(self): # Using FLAN-T5-base, a free and lightweight model good for instruction following self.model_name = "google/flan-t5-base" self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name) self.context = MissionContext() def format_conversation_history(self) -> str: """Format conversation history for the model input""" formatted = "" for msg in self.context.conversation_history: role = "User" if msg["role"] == "user" else "Assistant" formatted += f"{role}: {msg['content']}\n" return formatted def generate_response(self, user_input: str) -> tuple[str, str]: """Generate both conversational response and formatted mission objectives""" self.context.add_to_history("user", user_input) # Create prompt for the model conversation_history = self.format_conversation_history() prompt = f""" Previous conversation: {conversation_history} Task: Generate a mission for Original War game based on the conversation. Format the response as follows: 1. A conversational response understanding the mission 2. The mission objectives in Original War format using Add Main/Secondary/Alternative Current request: {user_input} """ # Generate response using the model inputs = self.tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True) outputs = self.model.generate( inputs["input_ids"], max_length=256, num_beams=4, temperature=0.7, no_repeat_ngram_size=2 ) full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) # Split the response into conversational and formatted parts try: parts = full_response.split("# M1") chat_response = parts[0].strip() formatted_objectives = "# M1" + parts[1] if len(parts) > 1 else self.generate_fallback_objectives(user_input) except Exception: chat_response = full_response formatted_objectives = self.generate_fallback_objectives(user_input) self.context.add_to_history("assistant", chat_response) return chat_response, formatted_objectives def generate_fallback_objectives(self, user_input: str) -> str: """Generate basic objectives if the main generation fails""" return f"""# M1 Add Main mission_objective - Complete the primary mission goal Add Secondary bonus_objective - Optional additional task #""" def create_gradio_interface(): generator = MissionGenerator() def process_input(user_input: str, history: List[Dict]) -> tuple[List[Dict], str]: chat_response, formatted_output = generator.generate_response(user_input) history.append({"user": user_input, "bot": chat_response}) return history, formatted_output with gr.Blocks() as interface: gr.Markdown(""" # Original War Mission Objective Generator Describe your mission scenario in natural language, and I'll help you create formatted mission objectives. """) chatbot = gr.Chatbot(height=400) msg = gr.Textbox( label="Describe your mission scenario", placeholder="Tell me about the mission you want to create..." ) clear = gr.Button("Clear Conversation") formatted_output = gr.Textbox( label="Generated Mission Objectives", lines=10, placeholder="Mission objectives will appear here..." ) msg.submit(process_input, inputs=[msg, chatbot], outputs=[chatbot, formatted_output]) clear.click(lambda: ([], ""), outputs=[chatbot, formatted_output]) gr.Examples([ ["I need a mission where players have to infiltrate an enemy base. They should try to avoid detection, but if they get spotted, they'll need to fight their way through."], ["Create a defensive mission where players protect a convoy. They should also try to minimize civilian casualties."], ["I want players to capture a strategic point. They can either do it by force or try diplomatic negotiations with the local faction."] ]) return interface # Launch the interface if __name__ == "__main__": iface = create_gradio_interface() iface.launch() """ # Discord bot implementation using the same generator import discord from discord.ext import commands import os class MissionBot(commands.Bot): def __init__(self): super().__init__(command_prefix="!") self.generator = MissionGenerator() async def on_ready(self): print(f'{self.user} has connected to Discord!') @commands.command(name='mission') async def generate_mission(self, ctx, *, description: str): chat_response, formatted_output = self.generator.generate_response(description) # Split response if it's too long for Discord if len(formatted_output) > 1990: # Discord has 2000 char limit await ctx.send(f"💭 {chat_response}") await ctx.send(f"```\n{formatted_output}\n```") else: await ctx.send(f"💭 {chat_response}\n\n```\n{formatted_output}\n```") # Initialize and run the bot if __name__ == "__main__": bot = MissionBot() bot.run(os.getenv('DISCORD_TOKEN')) """