import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from huggingface_hub import from_pretrained_keras import numpy as np import gradio as gr max_length = 55 img_width = 240 img_height = 50 model = from_pretrained_keras("napatswift/ocr-vl", compile=False) prediction_model = keras.models.Model( model.get_layer(name="image").input, model.get_layer(name="dense2").output ) vocab = [' ', '(', ')', '+', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', '=', '\xa0', 'ก', 'ข', 'ค', 'ฆ', 'ง', 'จ', 'ฉ', 'ช', 'ซ', 'ฌ', 'ญ', 'ฎ', 'ฏ', 'ฐ', 'ฑ', 'ฒ', 'ณ', 'ด', 'ต', 'ถ', 'ท', 'ธ', 'น', 'บ', 'ป', 'ผ', 'ฝ', 'พ', 'ฟ','ภ', 'ม', 'ย', 'ร', 'ฤ', 'ล', 'ฦ', 'ว', 'ศ', 'ษ', 'ส', 'ห', 'ฬ', 'อ', 'ฮ', 'ฯ', 'ะ', 'ั', 'า', 'ำ', 'ิ', 'ี', 'ึ', 'ื', 'ุ', 'ู', 'เ', 'แ', 'โ', 'ใ', 'ไ', 'ๅ', 'ๆ', '็', '่', '้', '๊', '๋', '์', '๐', '๑', '๒', '๓', '๔', '๕', '๖', '๗', '๘', '๙'] # Mapping integers back to original characters num_to_char = layers.StringLookup( vocabulary=vocab, invert=True ) def decode_batch_predictions(pred): input_len = np.ones(pred.shape[0]) * pred.shape[1] # Use greedy search. For complex tasks, you can use beam search results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][ :, :max_length ] # Iterate over the results and get back the text output_text = [] for res in results: res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8") output_text.append(res) return output_text def classify_image(img_path): # 1. Read image img = tf.io.read_file(img_path) # 2. Decode and convert to grayscale img = tf.io.decode_png(img, channels=1) # 3. Convert to float32 in [0, 1] range img = tf.image.convert_image_dtype(img, tf.float32) # 4. Resize to the desired size img = tf.image.resize_with_pad(img, img_height, img_width) # 5. Transpose the image because we want the time # dimension to correspond to the width of the image. img = tf.transpose(img, perm=[1, 0, 2]) img = tf.expand_dims(img, axis=0) preds = prediction_model.predict(img) pred_text = decode_batch_predictions(preds) return pred_text[0] image = gr.Image(type='filepath') text = gr.Textbox() iface = gr.Interface(classify_image, image, text, title="OCR for CAPTCHA", description = "Keras Implementation of OCR model for reading captcha 🤖🦹🏻", article = "Author: Anurag Singh. Based on the keras example from A_K_Nain", examples = ["dd764.png","3p4nn.png"] ) iface.launch()