from pathlib import Path import torch import gradio as gr from torch import nn LABELS = Path("class_names.txt").read_text().splitlines() model = nn.Sequential( nn.Conv2d(1, 32, 3, padding='same'), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(32, 64, 3, padding='same'), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(64, 128, 3, padding='same'), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(1152, 256), nn.ReLU(), nn.Linear(256, len(LABELS)), ) state_dict = torch.load('pytorch_model.bin', map_location='cpu') model.load_state_dict(state_dict, strict=False) model.eval() def predict(im): x = torch.tensor(im).unsqueeze(0).unsqueeze(0) / 255. with torch.no_grad(): out = model(x) probabilities = torch.nn.functional.softmax(out[0], dim=0) values, indices = torch.topk(probabilities, k=5) return {LABELS[i]: v.item() for i, v in zip(indices, values)} interface = gr.Interface(predict, inputs="sketchpad", outputs="label", live=True) interface.launch()