from starlette.responses import PlainTextResponse, JSONResponse, FileResponse
from starlette.applications import Starlette
from starlette.routing import Route
from starlette.middleware import Middleware
from starlette.middleware.cors import CORSMiddleware
from starlette.middleware.base import BaseHTTPMiddleware
from starlette.exceptions import HTTPException
from gensim.models import KeyedVectors
"""Prompt templates for LLM"""
from env import LLM_API_KEY, get_llm_api_key
import prompt
from time import time
from re import split, match
from PIL import Image
import requests
import json
import pypandoc
import cv2
from io import BytesIO
import numpy as np
import os
import pytesseract
import lang
import httpx
from secrets import SystemRandom
from random import randint, sample
from enum import Enum
from re import sub, findall, escape
from functools import partial
import redis.asyncio as redis
import asyncio
import subprocess
pool = redis.ConnectionPool.from_url("redis://localhost")
r = redis.Redis.from_pool(pool)
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format="[%(asctime)s %(levelname)s] %(message)s")
# Define a logger for your application (optional)
app_logger = logging.getLogger(__name__)
from flashcard_util import tldr, get_definitions_from_words, fetch_img_for_words
class QType(Enum):
WH = 0
STMT = 3
FILL = 6
class APIGuardMiddleware(BaseHTTPMiddleware):
def __init__(self, app):
super().__init__(app)
async def dispatch(self, request, call_next):
# Get current client url and client IP address
client_url = request.url.path
client_ip_addr = request.client.host
# IP-based rate limitation
async with r.pipeline(transaction=True) as pipeline:
try:
res = await pipeline.get(client_ip_addr).execute()
res = int(res[-1])
except:
res = None
if res == None:
# lim = 25 if client_url.endswith('text2quiz-three.vercel.app') else 5
# lim = 10 if client_url.endswith('localhost:8100') else 5
app_logger.info(client_url)
ok = await pipeline.set(client_ip_addr, 60).execute()
await r.expire(client_ip_addr, 60)
elif res > 0:
ok = await pipeline.set(client_ip_addr, res-1).execute()
else:
raise HTTPException(status_code=429, detail="This IP address is rate-limited")
# process the request and get the response
response = await call_next(request)
return response
sys_random = SystemRandom()
# TODO: Change to environment variable in prod.
#pytesseract.pytesseract.tesseract_cmd = r"C:\Users\Admin\AppData\Local\Programs\Tesseract-OCR\tesseract.exe"
async def __internal_tmp_w(id, content:any):
try:
async with r.pipeline(transaction=True) as pipeline:
ok = await pipeline.set(id, json.dumps(content).encode("utf-8")).execute()
await r.expire(id, 600)
return ok
except Exception as e:
app_logger.info(e)
async def __internal_tmp_r(id):
try:
async with r.pipeline(transaction=True) as pipeline:
res = await (pipeline.get(id).execute())
if res[-1] == None:
return [None, None, None]
res = res[-1].decode("utf-8")
return json.loads(res)
except Exception as e:
app_logger.info(e)
return [None,None,None]
async def __internal_tmp_d(id):
async with r.pipeline(transaction=True) as pipeline:
res = await (pipeline.delete(id).execute())
async def __mltest(request):
pass
async def __save_temp(request):
file_id = sys_random.randbytes(20).hex()
content = ""
# async with request.form(max_fields=3) as form:
form = await request.json()
content = form['content']
title = form['title']
keywords = form['keywords']
await __internal_tmp_w(file_id, [title, content, keywords])
print(file_id)
return PlainTextResponse(file_id, 200)
async def __get_temp(request, entry = 1):
return JSONResponse(await __internal_tmp_r(request.path_params['id']))
async def __remove_temp(request):
try:
__internal_tmp_d(request.path_params['id'])
except:
return PlainTextResponse("", 500)
return PlainTextResponse("", 200)
async def __convert_text(input, type_out="plain", type_in="html"):
if (not input):
app_logger.info("__convert_text: nothing to convert!")
return ""
# Create a subprocess
process = await asyncio.create_subprocess_exec(
# command to execute
'pandoc', '-f', type_in, '-t', type_out,
stdout=asyncio.subprocess.PIPE, # redirect stdout
stderr=asyncio.subprocess.STDOUT,
stdin=asyncio.subprocess.PIPE,# redirect stderr
)
stdout, _ = await process.communicate(input=input.encode())
#print("CONVERTED: ",stdout.decode("utf-8"))
return (stdout.decode("utf-8"))
async def __convert_file(fname_in, type_out="plain"):
proc = await asyncio.create_subprocess_exec(
'pandoc', '-i', fname_in, '-t', type_out,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.STDOUT,
stdin=asyncio.subprocess.PIPE,
)
stdout, _ = await proc.communicate()
return stdout.decode("utf-8")
async def __ocr(im, file_id):
# Perform image preprocessing
processed_im = cv2.cvtColor(np.array(im), cv2.COLOR_RGB2GRAY)
cv2.imwrite(f"{file_id}.png", processed_im)
out = pytesseract.image_to_string(f"{file_id}.png", lang="vie", config=r'--psm 4')
os.remove(f"{file_id}.png")
return out
def convert_links_to_text(text):
txt = text
# Anything that isn't a square closing bracket
name_regex = "[^]]+"
# http:// or https:// followed by anything but a closing paren
url_regex = "http[s]?://[^)]+"
markup_regex = '\[({0})]\(\s*({1})\s*\)'.format(name_regex, url_regex)
for match in findall(markup_regex,txt):
link_str = f"[{match[0]}]({match[1]})"
txt = txt.replace(link_str, match[0])
return txt
def remove_wikipedia_footnote_ptrs(text):
txt = text
wiki_footnote_regex = r'\\\[\d+\\]'
txt = sub(wiki_footnote_regex, '', txt)
return txt
async def __convert2md(inp):
# Use gfm-raw_html to strip styling data from source file
converted = await __convert_text(inp, "gfm-raw_html", "html")
converted_without_link = convert_links_to_text(converted)
converted_without_footnote_ptr = remove_wikipedia_footnote_ptrs(converted_without_link)
print("[CONVERT]:", converted_without_footnote_ptr)
return converted_without_footnote_ptr
async def __convert2plain(inp):
return await __convert_text(inp, "plain", "html")
def convert2md(req):
pass
async def __parse_paragraphs (content: str, batching: bool = False):
_p = ""
_rp = content
_rp = await __convert2md(_rp)
_rp = _rp.replace('\r','')
# remove empty lines and headers
_p = [_x.strip() for _x in _rp.split('\n\n') if len(_x)!=0 and _x.strip().count('#') != len(_x)]
_p_json = []
h_cnt =0
header=""
for _n in _p:
__h_cnt =0
prev_h = ""
# parse header for each paragraphs
try:
for _c in _n:
if _c == '#': __h_cnt+=1
else: break
if (__h_cnt >= 1 and len(_n) > __h_cnt):
header=_n
h_cnt = __h_cnt
# print(_n, len(_n))
elif (len(_n.replace('#','').strip())):
# remove accidental /n's in converted HTML content
if (batching and len(_p_json) >= 1):
if (header == _p_json[-1]['header']):
# print(header)
_p_json[-1]['content'] += '\n'
_p_json[-1]['content'] += _n.replace('\n', ' ')
_p_json[-1]['count']+=1
continue
_p_json.append({'header': header, 'h_cnt': h_cnt, 'content': _n.replace('\n',' '), 'count': 1})
except:
continue
return _p_json
async def __query_ml_predict(qtype: QType, content: str, header: str, token_limit: int, num_qs=5, l=lang.VI_VN):
"""Get prediction from a third-party Llama3-8B-Instruct deployment"""
app_logger.info('[PROC] ML prediction started')
stopwatch = time()
match qtype:
case QType.WH:
# Make request to Awan LLM endpoint
async with httpx.AsyncClient() as client:
_r = await client.post(
url="https://api.awanllm.com/v1/chat/completions",
headers={'Content-Type': 'application/json', 'Authorization': f'Bearer {get_llm_api_key()}'},
data=json.dumps({
"model": "Meta-Llama-3-8B-Instruct",
"messages": [
{"role": "user", "content": prompt.gen_prompt_wh(content=content, header=header, num_qs=num_qs, lang=l)}
],
"max_tokens": 4096,
"presence_penalty":0.3,
"temperature":0.55
}),
timeout=None
)
print(time() - stopwatch)
if _r.status_code != 200:
app_logger.info(_r.json())
return {"content": "", "style": None, "success": False}
try:
return {"content": _r.json()['choices'][0]['message']['content'], "style": QType.WH, "success": True}
except:
return {"content": "", "style": None, "success": False}
case QType.STMT:
# Make request to Awan LLM endpoint
async with httpx.AsyncClient() as client:
_r = await client.post(
url="https://api.awanllm.com/v1/chat/completions",
headers={'Content-Type': 'application/json', 'Authorization': f'Bearer {get_llm_api_key()}'},
data=json.dumps({
"model": "Meta-Llama-3-8B-Instruct",
"messages": [
{"role": "user", "content": prompt.gen_prompt_statements(content=content, header=header, num_qs=num_qs, lang=l)}
],
"max_tokens": 4096,
}),
timeout=None
)
if _r.status_code//100 != 2:
app_logger.info(_r.json())
return {"content": "", "style": QType.STMT, "success": False}
try:
_r_content = _r.json()['choices'][0]['message']['content']
except:
return {"content": "", "style":None, "success":False}
try:
_r_content = _r.json()['choices'][0]['message']['content'].split('\n\n',1)[1]
except:
_r_content = _r.json()['choices'][0]['message']['content'].split('\n',1)[1]
async with httpx.AsyncClient() as client:
_w = await client.post(
url="https://api.awanllm.com/v1/chat/completions",
headers={'Content-Type': 'application/json', 'Authorization': f'Bearer {get_llm_api_key()}'},
data=json.dumps({
"model": "Meta-Llama-3-8B-Instruct",
"messages": [
{"role": "user", "content": prompt.gen_prompt_statements_false(content=_r_content, lang=l)}
],
"max_tokens": 4096,
}),
timeout=None
)
try:
_ch = _w.json()['choices'][0]['message']['content']
except:
return {"content": "", "style": None, "success":False}
try:
_w_content = _w.json()['choices'][0]['message']['content'].split('\n\n',1)[1]
#print(time() - stopwatch)
return {"content": f"{_r_content}\n{_w_content}", "style": QType.STMT, "success": True}
except:
_w_content = _w.json()['choices'][0]['message']['content'].split('\n',1)[1]
#print(time() - stopwatch)
return {"content": f"{_r_content}\n{_w_content}", "style": QType.STMT, "success": True}
async def parse_wh_question(raw_qa_list, pgph_i):
__ANS_KEY_MAPPING = {'A': 1, 'B':2, 'C':3,'D':4}
__parsed_outputs = []
for x in raw_qa_list:
try:
segments = x
raw_key = segments[5]
raw_key = 'A' if 'A' in raw_key else 'B' if 'B' in raw_key else 'D' if 'D' in raw_key else 'C'
# print(segments)
match randint(0, 3):
case 0 | 1:
__parsed_outputs.append(
{
"pgph_i": pgph_i,
"prompt": segments[0],
"type": "MCQ",
"choices": segments[1:5],
"keys": [segments[__ANS_KEY_MAPPING[raw_key]],],
}
)
case 2 | 3:
__parsed_outputs.append(
{
"pgph_i": pgph_i,
"prompt": segments[0],
"type": "OPEN",
# Cleaning up ML output
"keys": [segments[__ANS_KEY_MAPPING[raw_key]].split(' ',1)[1]],
"choices": [segments[__ANS_KEY_MAPPING[raw_key]]]
}
)
except:
print("invalid: ", x)
continue
return __parsed_outputs
async def parse_stmt_question(stmts: list[str], pgph_i, __lang:str):
print("starting inference...")
if (stmts[0].__contains__('True: ') or stmts[0].__contains__('False: ')):
__correct_stmts = [r[5:].strip() for r in stmts if r.__contains__('True: ')]
__false_stmts = [r[5:].strip() for r in stmts if r.__contains__('False: ')]
else:
__correct_stmts = stmts[:len(stmts)//2]
__false_stmts = stmts[len(stmts)//2:]
__parsed_outputs = []
# while len(__correct_stmts) >= 2:
for c in range(0, len(__correct_stmts), 2):
match randint(0, 6):
case 6:
try:
__parsed_outputs.append(
{
"pgph_i": pgph_i,
"prompt": prompt.USER_PROMPTS['AMEND'] if __lang==lang.VI_VN else prompt.USER_PROMPTS_EN['AMEND'],
"type": "AMEND",
"keys": __correct_stmts[c],
"choices": [__false_stmts[c]]
}
)
__parsed_outputs.append(
{
"pgph_i": pgph_i,
"prompt": prompt.USER_PROMPTS['AMEND'] if __lang==lang.VI_VN else prompt.USER_PROMPTS_EN['AMEND'],
"type": "AMEND",
"keys": __correct_stmts[c+1],
"choices": [__false_stmts[c+1]]
}
)
except:
continue
case 2|4:
__c = __correct_stmts[c:c+2]
# print(min(2, len(__false_stmts)))
try:
__parsed_outputs.append(
{
"pgph_i": pgph_i,
"prompt": prompt.USER_PROMPTS['MULT'] if __lang==lang.VI_VN else prompt.USER_PROMPTS_EN['MULT'],
"type": "MULT",
"keys": __c,
"choices": sample([*__c, *sample( __false_stmts, min(2, len(__false_stmts)) )], min(2, len(__false_stmts)) + len(__c))
}
)
except:
continue
case 3|5:
try:
__c = sample(__false_stmts, 2)
__parsed_outputs.append(
{
"pgph_i": pgph_i,
"prompt": prompt.USER_PROMPTS['MULT_INV'] if __lang==lang.VI_VN else prompt.USER_PROMPTS_EN['MULT_INV'],
"type": "MULT",
"keys": __c,
"choices": sample([*__c, __correct_stmts[0], __correct_stmts[1]], 2+len(__c))
}
)
except:
continue
case 0|1:
for aa in range(2):
try:
_prompt = __correct_stmts[c+aa]
except:
continue
# print(_prompt)
# FIXME: To circumvent some quirky 3rd party lib bugs around chunking phrases with quote, strip them from the sentences for the time being.
_prompt = _prompt.replace("\"", "").replace("\'", "")
_content_w = []
if __lang == lang.VI_VN:
_, _content_w = prompt.parse_content_words([_prompt])
else:
_, _content_w = prompt.parse_content_words_nltk([_prompt])
# print(_proper_n)
for i, ns in enumerate(_content_w, 1):
try:
initials = "...".join([w[0] for w in ns.split(" ") if w])
except:
initials = "..."
_prompt = _prompt.replace(ns, f"({initials}...)", 1)
__parsed_outputs.append(
{
"pgph_i": pgph_i,
"prompt": _prompt,
"type": "OPEN",
"keys": _content_w,
"choices": []
}
)
return __parsed_outputs
async def generate_questions(request):
# parse paragraphs from document file
try:
__cont = await __internal_tmp_r(request.path_params['id'])
__ps = await __parse_paragraphs(__cont[1], batching=True)
except Exception as e:
print(str(e))
return JSONResponse({"err": str(e)}, 500)
# Map asyncronous ML prediction function over list of paragraphs
ptasks = []
__raw_outputs = []
__parsed_outputs = []
# print(__ps)
for z, _p in enumerate(__ps):
# __query_ml_predict is an awaitable
ptasks.append(__query_ml_predict(qtype=(QType.STMT if z%2==1 else QType.WH), content=_p['content'], header=_p['header'], l=request.path_params.get('lang', lang.VI_VN), num_qs=request.path_params.get('num_qs', 5 * _p.get('count', 1)), token_limit = int(1024 * _p.get('count', 1))))
# __raw_outputs = [await p for p in ptasks]
__raw_outputs = await asyncio.gather(*ptasks)
print(__raw_outputs)
for pgph_i, o in enumerate(__raw_outputs):
# print(o)
# print(pgph_i)
# TODO: Parse ML output to JSON
if (not o['success']):
continue
if (o['style'] == QType.WH):
raw_qa_list = []
# raw_segmented: list[str] = list(filter(lambda x: (len(x)>0), o['content'].split("\n\n")))[1:]
# for i in range(len(raw_segmented)):
# if (len(raw_segmented[i]) and raw_segmented[i].count('\n') < 5):
# raw_segmented[i] += f'\n{raw_segmented[i+1]}'
# raw_segmented[i+1] = ""
# print(raw_segmented)
seg_index = 0
seg_index_map = ['Q', 'A', 'B', 'C', 'D', '']
raw_segmented = []
raw_segmented_list = []
for seg in o['content'].split('\n'):
if seg.strip().startswith(seg_index_map[seg_index]):
if seg_index == 5:
if not ('A' in seg or 'B' in seg or 'C' in seg or 'D' in seg):
continue
print(seg)
raw_segmented.append(seg)
seg_index+=1
if seg_index == 6:
raw_segmented_list.append(raw_segmented.copy())
raw_segmented = []
seg_index = 0
__parsed_outputs.extend(await parse_wh_question(raw_segmented_list, pgph_i))
seg_index = 0
elif (o['style'] == QType.STMT):
print(o['content'])
# remove_after_dash_and_parentheses
stmts = [ sub(r" - .*| \(.*\)", "", x.split('. ',1)[1]) for x in o['content'].split('\n') if bool(match("^\d+\.", x))]
# print(stmts)
__parsed_outputs.extend(await parse_stmt_question(stmts, pgph_i, request.path_params.get('lang', lang.VI_VN)))
# Return the question data
if len(__parsed_outputs):
return JSONResponse({"questions": __parsed_outputs, "paragraphs": __ps, "title": __cont[0]})
else:
raise HTTPException(500)
async def scan2OCR(request):
content = b''
ret = []
async with request.form(max_files=10, max_fields=20) as form:
for i in range(int(form['uploads'])):
# Get random file ID
file_id = sys_random.randbytes(12).hex()
# Load image using PIL and convert to opencv grayscale format
im = Image.open(BytesIO(await form[f'upload_{i}'].read()))
# # Perform image preprocessing
# processed_im = cv2.cvtColor(np.array(im), cv2.COLOR_RGB2GRAY)
# cv2.imwrite(f"{file_id}.png", processed_im)
# out = pytesseract.image_to_string(f"{file_id}.png", lang="vie", config=r'--psm 4')
# os.remove(f"{file_id}.png")
_loop = asyncio.get_running_loop()
_out = await _loop.run_in_executor(None, partial(__ocr, im, file_id))
out = await _out
# adapt the output text to the HTML-based rich text editor
ret.append({"content": out.replace('\n','
')})
return JSONResponse(ret, 200)
async def convert2html(request):
content = b''
filename = ""
output = ""
files = []
rets = []
async with request.form(max_files=10, max_fields=20) as form:
print(form['uploads'])
for i in range(int(form['uploads'])):
# Get random file ID
filename = sys_random.randbytes(12).hex()
ext = form[f'upload_{i}'].filename.split(".")[-1]
content = await form[f'upload_{i}'].read()
with open(f"{filename}.{ext}", 'wb') as o:
o.write(content)
files.append(f"{filename}.{ext}")
for file in files:
try:
output = await __convert_file(file, "html")
print(output)
except Exception as e:
app_logger.error(e)
return JSONResponse({"detail": ""}, status_code=422)
# Extract image sources from document
imgs = []
start = -1
for i in range(len(output)):
if output[i:i+4] == "" and start != -1:
img_tag = output[start:i+2]
imgs.append(img_tag)
start = -1
for x in imgs:
output = output.replace(x, " ")
# Remove upload file
os.remove(file)
rets.append({"content": output, "resources": imgs})
return JSONResponse(rets)
async def llm_generate_text(request):
async with httpx.AsyncClient() as client:
o = await request.json()
_r = await client.post(
url="https://api.awanllm.com/v1/chat/completions",
headers={'Content-Type': 'application/json', 'Authorization': f'Bearer {get_llm_api_key()}'},
data=json.dumps({
"model": "Meta-Llama-3-8B-Instruct",
"messages": [
{"role": "user", "content": f"Generate a study note about {o['prompt']}. Use {o['lang']}."}
],
"max_tokens": 4096,
"presence_penalty":0.3,
"temperature":0.5
}),
timeout=None)
try:
if _r.status_code != 200:
raise HTTPException(status_code=429, detail=str(_r.json()))
repl = _r.json()['choices'][0]['message']['content']
# input, type_out="plain", type_in="html"
repl = await __convert_text(repl, "html-raw_html", "markdown")
return PlainTextResponse(repl)
except Exception as e:
raise HTTPException(status_code=422, detail=str(e))
async def get_flashcards(request):
# [title, content, keywords]
__file = await __internal_tmp_r(request.path_params['id'])
__content = __file[1]
__lang = request.path_params['lang']
__keywords = [r.strip() for r in __file[2] if len(r) > 0]
__tldr = await tldr(__content, __lang)
print(__tldr)
__definitions = await get_definitions_from_words(__keywords, __tldr, __lang)
print(__definitions)
return JSONResponse({"tldr": __tldr, "defs": __definitions, "imgs": await fetch_img_for_words(__keywords)})
"""
Similarity validation
"""
w2v_vi = KeyedVectors.load_word2vec_format('wiki.vi.model.bin', binary=True)
# w2v_en = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin',binary=True)
vocab_vi = w2v_vi.key_to_index
# vocab_en = w2v_en.vocab
from underthesea import word_tokenize
from nltk.tokenize import word_tokenize as word_tokenize_en
from numpy import zeros,zeros_like
from scipy.spatial.distance import cosine
import warnings
async def validate_similarity(request):
req = await request.json()
sent1, sent2 = req['sentences']
l = req['lang']
if (l == lang.VI_VN):
tokens1 = word_tokenize(sent1.lower())
tokens2 = word_tokenize(sent2.lower())
else:
tokens1 = word_tokenize_en(sent1.lower())
tokens2 = word_tokenize_en(sent2.lower())
vect1 = zeros_like(w2v_vi.get_vector('an'))
vect2 = zeros_like(w2v_vi.get_vector('an'))
for t in tokens1:
if t in vocab_vi:
vect1 += w2v_vi.get_vector(t)
for t in tokens2:
if t in vocab_vi:
vect2 += w2v_vi.get_vector(t)
# Calculate similarity using cosine similarity: This metric measures the cosine of the angle between two embedding vectors. A higher cosine similarity indicates more similar sentences.
with warnings.catch_warnings():
warnings.simplefilter('error', RuntimeWarning)
try:
sim = 1 - cosine(vect1, vect2) >= 0.8
except RuntimeWarning as e:
return JSONResponse({"isSimilar": "False"})
return JSONResponse({"isSimilar": str(sim)})
async def get_cached_img_from_disk(request):
_fn = request.path_params['fn']
# /images/img_-3711971785602203114.webp HTTP/1.1"
if _fn.startswith('img_') and _fn.endswith('.webp'):
return FileResponse(_fn)
else:
raise HTTPException(404)
async def generate_redemption(request):
req = await request.json()
paragraphs = req['pgphs']
ret_questions = []
ptasks = []
for paragraph in paragraphs:
ptasks.append(__query_ml_predict(QType.WH, paragraph["content"], paragraph["header"], 4096, num_qs=paragraph.get("count", 1)*5, l=req['lang']))
raw_questions: list[str] = await asyncio.gather(*ptasks)
for query in raw_questions:
if not query['success']:
continue
q = query['content']
raw_segments = [x.strip() for x in q.split('\n') if x.strip()]
filtered = []
seg_cnt = 0
seg_map = ['Q', 'A', 'B', 'C', 'D', '']
for r in raw_segments:
if r.startswith(seg_map[seg_cnt]):
if seg_cnt == 5:
if not ('A' in r or 'B' in r or 'C' in r or 'D' in r):
continue
filtered.append(r)
seg_cnt += 1
if seg_cnt == 6:
_r = filtered[5]
ans_index = 1 if 'A' in _r else 2 if 'B' in _r else 4 if 'D' in _r else 3
ans_key = filtered[ans_index][2:].strip()
if randint(0, 1) == 1:
ret_questions.append({'prompt': filtered[0], 'keys': [ans_key,]})
else:
prompt_format = "\n".join(filtered[0:5])
ret_questions.append({'prompt': prompt_format, 'keys': [seg_map[ans_index]]})
filtered.clear()
seg_cnt = 0
return JSONResponse({'questions': ret_questions})
async def root(requests):
return PlainTextResponse("Success")
# Application entry point
routes = ...
middleware = [
Middleware(
CORSMiddleware,
allow_origins=['http://localhost:8100', 'https://text2quiz-three.vercel.app'],
allow_methods =['*'],
),
Middleware(APIGuardMiddleware),
]
app = Starlette(debug=True,routes=[
Route('/getFlashcards/{id}/{lang}', get_flashcards, methods=['GET']),
Route('/convert2html',convert2html, methods=['POST']),
Route('/scan2ocr', scan2OCR, methods=['POST']),
Route('/temp', __save_temp, methods=['POST']),
Route('/temp/{id}', __get_temp, methods=['GET']),
Route('/temp/{id}', __remove_temp, methods=['DELETE']),
# Route('/generateQuiz/{id}', generate_questions, methods=['GET']),
Route('/generateQuiz/{id}/{lang}', generate_questions, methods=['GET']),
# /images/img_-3711971785602203114.webp HTTP/1.1"
Route('/images/{fn}', get_cached_img_from_disk, methods=['GET']),
Route('/convert2md', convert2md, methods=['POST']),
Route('/mltest', __mltest, methods=['GET']),
Route('/validateSimilarity', validate_similarity, methods=['POST']),
Route('/llmGenerateText', llm_generate_text, methods=['POST']),
Route('/generateRedemption', generate_redemption, methods=['POST']),
Route('/', root, methods=['GET']),
],
middleware=middleware)
import os
print("running at: " + os.getcwd())