from starlette.responses import PlainTextResponse, JSONResponse, FileResponse from starlette.applications import Starlette from starlette.routing import Route from starlette.middleware import Middleware from starlette.middleware.cors import CORSMiddleware from starlette.middleware.base import BaseHTTPMiddleware from starlette.exceptions import HTTPException from gensim.models import KeyedVectors """Prompt templates for LLM""" from env import LLM_API_KEY, get_llm_api_key import prompt from time import time from re import split, match from PIL import Image import requests import json import pypandoc import cv2 from io import BytesIO import numpy as np import os import pytesseract import lang import httpx from secrets import SystemRandom from random import randint, sample from enum import Enum from re import sub, findall, escape from functools import partial import redis.asyncio as redis import asyncio import subprocess pool = redis.ConnectionPool.from_url("redis://localhost") r = redis.Redis.from_pool(pool) import logging # Configure logging logging.basicConfig(level=logging.INFO, format="[%(asctime)s %(levelname)s] %(message)s") # Define a logger for your application (optional) app_logger = logging.getLogger(__name__) from flashcard_util import tldr, get_definitions_from_words, fetch_img_for_words class QType(Enum): WH = 0 STMT = 3 FILL = 6 class APIGuardMiddleware(BaseHTTPMiddleware): def __init__(self, app): super().__init__(app) async def dispatch(self, request, call_next): # Get current client url and client IP address client_url = request.url.path client_ip_addr = request.client.host # IP-based rate limitation async with r.pipeline(transaction=True) as pipeline: try: res = await pipeline.get(client_ip_addr).execute() res = int(res[-1]) except: res = None if res == None: # lim = 25 if client_url.endswith('text2quiz-three.vercel.app') else 5 # lim = 10 if client_url.endswith('localhost:8100') else 5 app_logger.info(client_url) ok = await pipeline.set(client_ip_addr, 60).execute() await r.expire(client_ip_addr, 60) elif res > 0: ok = await pipeline.set(client_ip_addr, res-1).execute() else: raise HTTPException(status_code=429, detail="This IP address is rate-limited") # process the request and get the response response = await call_next(request) return response sys_random = SystemRandom() # TODO: Change to environment variable in prod. #pytesseract.pytesseract.tesseract_cmd = r"C:\Users\Admin\AppData\Local\Programs\Tesseract-OCR\tesseract.exe" async def __internal_tmp_w(id, content:any): try: async with r.pipeline(transaction=True) as pipeline: ok = await pipeline.set(id, json.dumps(content).encode("utf-8")).execute() await r.expire(id, 600) return ok except Exception as e: app_logger.info(e) async def __internal_tmp_r(id): try: async with r.pipeline(transaction=True) as pipeline: res = await (pipeline.get(id).execute()) if res[-1] == None: return [None, None, None] res = res[-1].decode("utf-8") return json.loads(res) except Exception as e: app_logger.info(e) return [None,None,None] async def __internal_tmp_d(id): async with r.pipeline(transaction=True) as pipeline: res = await (pipeline.delete(id).execute()) async def __mltest(request): pass async def __save_temp(request): file_id = sys_random.randbytes(20).hex() content = "" # async with request.form(max_fields=3) as form: form = await request.json() content = form['content'] title = form['title'] keywords = form['keywords'] await __internal_tmp_w(file_id, [title, content, keywords]) print(file_id) return PlainTextResponse(file_id, 200) async def __get_temp(request, entry = 1): return JSONResponse(await __internal_tmp_r(request.path_params['id'])) async def __remove_temp(request): try: __internal_tmp_d(request.path_params['id']) except: return PlainTextResponse("", 500) return PlainTextResponse("", 200) async def __convert_text(input, type_out="plain", type_in="html"): if (not input): app_logger.info("__convert_text: nothing to convert!") return "" # Create a subprocess process = await asyncio.create_subprocess_exec( # command to execute 'pandoc', '-f', type_in, '-t', type_out, stdout=asyncio.subprocess.PIPE, # redirect stdout stderr=asyncio.subprocess.STDOUT, stdin=asyncio.subprocess.PIPE,# redirect stderr ) stdout, _ = await process.communicate(input=input.encode()) #print("CONVERTED: ",stdout.decode("utf-8")) return (stdout.decode("utf-8")) async def __convert_file(fname_in, type_out="plain"): proc = await asyncio.create_subprocess_exec( 'pandoc', '-i', fname_in, '-t', type_out, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.STDOUT, stdin=asyncio.subprocess.PIPE, ) stdout, _ = await proc.communicate() return stdout.decode("utf-8") async def __ocr(im, file_id): # Perform image preprocessing processed_im = cv2.cvtColor(np.array(im), cv2.COLOR_RGB2GRAY) cv2.imwrite(f"{file_id}.png", processed_im) out = pytesseract.image_to_string(f"{file_id}.png", lang="vie", config=r'--psm 4') os.remove(f"{file_id}.png") return out def convert_links_to_text(text): txt = text # Anything that isn't a square closing bracket name_regex = "[^]]+" # http:// or https:// followed by anything but a closing paren url_regex = "http[s]?://[^)]+" markup_regex = '\[({0})]\(\s*({1})\s*\)'.format(name_regex, url_regex) for match in findall(markup_regex,txt): link_str = f"[{match[0]}]({match[1]})" txt = txt.replace(link_str, match[0]) return txt def remove_wikipedia_footnote_ptrs(text): txt = text wiki_footnote_regex = r'\\\[\d+\\]' txt = sub(wiki_footnote_regex, '', txt) return txt async def __convert2md(inp): # Use gfm-raw_html to strip styling data from source file converted = await __convert_text(inp, "gfm-raw_html", "html") converted_without_link = convert_links_to_text(converted) converted_without_footnote_ptr = remove_wikipedia_footnote_ptrs(converted_without_link) print("[CONVERT]:", converted_without_footnote_ptr) return converted_without_footnote_ptr async def __convert2plain(inp): return await __convert_text(inp, "plain", "html") def convert2md(req): pass async def __parse_paragraphs (content: str, batching: bool = False): _p = "" _rp = content _rp = await __convert2md(_rp) _rp = _rp.replace('\r','') # remove empty lines and headers _p = [_x.strip() for _x in _rp.split('\n\n') if len(_x)!=0 and _x.strip().count('#') != len(_x)] _p_json = [] h_cnt =0 header="" for _n in _p: __h_cnt =0 prev_h = "" # parse header for each paragraphs try: for _c in _n: if _c == '#': __h_cnt+=1 else: break if (__h_cnt >= 1 and len(_n) > __h_cnt): header=_n h_cnt = __h_cnt # print(_n, len(_n)) elif (len(_n.replace('#','').strip())): # remove accidental /n's in converted HTML content if (batching and len(_p_json) >= 1): if (header == _p_json[-1]['header']): # print(header) _p_json[-1]['content'] += '\n' _p_json[-1]['content'] += _n.replace('\n', ' ') _p_json[-1]['count']+=1 continue _p_json.append({'header': header, 'h_cnt': h_cnt, 'content': _n.replace('\n',' '), 'count': 1}) except: continue return _p_json async def __query_ml_predict(qtype: QType, content: str, header: str, token_limit: int, num_qs=5, l=lang.VI_VN): """Get prediction from a third-party Llama3-8B-Instruct deployment""" app_logger.info('[PROC] ML prediction started') stopwatch = time() match qtype: case QType.WH: # Make request to Awan LLM endpoint async with httpx.AsyncClient() as client: _r = await client.post( url="https://api.awanllm.com/v1/chat/completions", headers={'Content-Type': 'application/json', 'Authorization': f'Bearer {get_llm_api_key()}'}, data=json.dumps({ "model": "Meta-Llama-3-8B-Instruct", "messages": [ {"role": "user", "content": prompt.gen_prompt_wh(content=content, header=header, num_qs=num_qs, lang=l)} ], "max_tokens": 4096, "presence_penalty":0.3, "temperature":0.55 }), timeout=None ) print(time() - stopwatch) if _r.status_code != 200: app_logger.info(_r.json()) return {"content": "", "style": None, "success": False} try: return {"content": _r.json()['choices'][0]['message']['content'], "style": QType.WH, "success": True} except: return {"content": "", "style": None, "success": False} case QType.STMT: # Make request to Awan LLM endpoint async with httpx.AsyncClient() as client: _r = await client.post( url="https://api.awanllm.com/v1/chat/completions", headers={'Content-Type': 'application/json', 'Authorization': f'Bearer {get_llm_api_key()}'}, data=json.dumps({ "model": "Meta-Llama-3-8B-Instruct", "messages": [ {"role": "user", "content": prompt.gen_prompt_statements(content=content, header=header, num_qs=num_qs, lang=l)} ], "max_tokens": 4096, }), timeout=None ) if _r.status_code//100 != 2: app_logger.info(_r.json()) return {"content": "", "style": QType.STMT, "success": False} try: _r_content = _r.json()['choices'][0]['message']['content'] except: return {"content": "", "style":None, "success":False} try: _r_content = _r.json()['choices'][0]['message']['content'].split('\n\n',1)[1] except: _r_content = _r.json()['choices'][0]['message']['content'].split('\n',1)[1] async with httpx.AsyncClient() as client: _w = await client.post( url="https://api.awanllm.com/v1/chat/completions", headers={'Content-Type': 'application/json', 'Authorization': f'Bearer {get_llm_api_key()}'}, data=json.dumps({ "model": "Meta-Llama-3-8B-Instruct", "messages": [ {"role": "user", "content": prompt.gen_prompt_statements_false(content=_r_content, lang=l)} ], "max_tokens": 4096, }), timeout=None ) try: _ch = _w.json()['choices'][0]['message']['content'] except: return {"content": "", "style": None, "success":False} try: _w_content = _w.json()['choices'][0]['message']['content'].split('\n\n',1)[1] #print(time() - stopwatch) return {"content": f"{_r_content}\n{_w_content}", "style": QType.STMT, "success": True} except: _w_content = _w.json()['choices'][0]['message']['content'].split('\n',1)[1] #print(time() - stopwatch) return {"content": f"{_r_content}\n{_w_content}", "style": QType.STMT, "success": True} async def parse_wh_question(raw_qa_list, pgph_i): __ANS_KEY_MAPPING = {'A': 1, 'B':2, 'C':3,'D':4} __parsed_outputs = [] for x in raw_qa_list: try: segments = x raw_key = segments[5] raw_key = 'A' if 'A' in raw_key else 'B' if 'B' in raw_key else 'D' if 'D' in raw_key else 'C' # print(segments) match randint(0, 3): case 0 | 1: __parsed_outputs.append( { "pgph_i": pgph_i, "prompt": segments[0], "type": "MCQ", "choices": segments[1:5], "keys": [segments[__ANS_KEY_MAPPING[raw_key]],], } ) case 2 | 3: __parsed_outputs.append( { "pgph_i": pgph_i, "prompt": segments[0], "type": "OPEN", # Cleaning up ML output "keys": [segments[__ANS_KEY_MAPPING[raw_key]].split(' ',1)[1]], "choices": [segments[__ANS_KEY_MAPPING[raw_key]]] } ) except: print("invalid: ", x) continue return __parsed_outputs async def parse_stmt_question(stmts: list[str], pgph_i, __lang:str): print("starting inference...") if (stmts[0].__contains__('True: ') or stmts[0].__contains__('False: ')): __correct_stmts = [r[5:].strip() for r in stmts if r.__contains__('True: ')] __false_stmts = [r[5:].strip() for r in stmts if r.__contains__('False: ')] else: __correct_stmts = stmts[:len(stmts)//2] __false_stmts = stmts[len(stmts)//2:] __parsed_outputs = [] # while len(__correct_stmts) >= 2: for c in range(0, len(__correct_stmts), 2): match randint(0, 6): case 6: try: __parsed_outputs.append( { "pgph_i": pgph_i, "prompt": prompt.USER_PROMPTS['AMEND'] if __lang==lang.VI_VN else prompt.USER_PROMPTS_EN['AMEND'], "type": "AMEND", "keys": __correct_stmts[c], "choices": [__false_stmts[c]] } ) __parsed_outputs.append( { "pgph_i": pgph_i, "prompt": prompt.USER_PROMPTS['AMEND'] if __lang==lang.VI_VN else prompt.USER_PROMPTS_EN['AMEND'], "type": "AMEND", "keys": __correct_stmts[c+1], "choices": [__false_stmts[c+1]] } ) except: continue case 2|4: __c = __correct_stmts[c:c+2] # print(min(2, len(__false_stmts))) try: __parsed_outputs.append( { "pgph_i": pgph_i, "prompt": prompt.USER_PROMPTS['MULT'] if __lang==lang.VI_VN else prompt.USER_PROMPTS_EN['MULT'], "type": "MULT", "keys": __c, "choices": sample([*__c, *sample( __false_stmts, min(2, len(__false_stmts)) )], min(2, len(__false_stmts)) + len(__c)) } ) except: continue case 3|5: try: __c = sample(__false_stmts, 2) __parsed_outputs.append( { "pgph_i": pgph_i, "prompt": prompt.USER_PROMPTS['MULT_INV'] if __lang==lang.VI_VN else prompt.USER_PROMPTS_EN['MULT_INV'], "type": "MULT", "keys": __c, "choices": sample([*__c, __correct_stmts[0], __correct_stmts[1]], 2+len(__c)) } ) except: continue case 0|1: for aa in range(2): try: _prompt = __correct_stmts[c+aa] except: continue # print(_prompt) # FIXME: To circumvent some quirky 3rd party lib bugs around chunking phrases with quote, strip them from the sentences for the time being. _prompt = _prompt.replace("\"", "").replace("\'", "") _content_w = [] if __lang == lang.VI_VN: _, _content_w = prompt.parse_content_words([_prompt]) else: _, _content_w = prompt.parse_content_words_nltk([_prompt]) # print(_proper_n) for i, ns in enumerate(_content_w, 1): try: initials = "...".join([w[0] for w in ns.split(" ") if w]) except: initials = "..." _prompt = _prompt.replace(ns, f"({initials}...)", 1) __parsed_outputs.append( { "pgph_i": pgph_i, "prompt": _prompt, "type": "OPEN", "keys": _content_w, "choices": [] } ) return __parsed_outputs async def generate_questions(request): # parse paragraphs from document file try: __cont = await __internal_tmp_r(request.path_params['id']) __ps = await __parse_paragraphs(__cont[1], batching=True) except Exception as e: print(str(e)) return JSONResponse({"err": str(e)}, 500) # Map asyncronous ML prediction function over list of paragraphs ptasks = [] __raw_outputs = [] __parsed_outputs = [] # print(__ps) for z, _p in enumerate(__ps): # __query_ml_predict is an awaitable ptasks.append(__query_ml_predict(qtype=(QType.STMT if z%2==1 else QType.WH), content=_p['content'], header=_p['header'], l=request.path_params.get('lang', lang.VI_VN), num_qs=request.path_params.get('num_qs', 5 * _p.get('count', 1)), token_limit = int(1024 * _p.get('count', 1)))) # __raw_outputs = [await p for p in ptasks] __raw_outputs = await asyncio.gather(*ptasks) print(__raw_outputs) for pgph_i, o in enumerate(__raw_outputs): # print(o) # print(pgph_i) # TODO: Parse ML output to JSON if (not o['success']): continue if (o['style'] == QType.WH): raw_qa_list = [] # raw_segmented: list[str] = list(filter(lambda x: (len(x)>0), o['content'].split("\n\n")))[1:] # for i in range(len(raw_segmented)): # if (len(raw_segmented[i]) and raw_segmented[i].count('\n') < 5): # raw_segmented[i] += f'\n{raw_segmented[i+1]}' # raw_segmented[i+1] = "" # print(raw_segmented) seg_index = 0 seg_index_map = ['Q', 'A', 'B', 'C', 'D', ''] raw_segmented = [] raw_segmented_list = [] for seg in o['content'].split('\n'): if seg.strip().startswith(seg_index_map[seg_index]): if seg_index == 5: if not ('A' in seg or 'B' in seg or 'C' in seg or 'D' in seg): continue print(seg) raw_segmented.append(seg) seg_index+=1 if seg_index == 6: raw_segmented_list.append(raw_segmented.copy()) raw_segmented = [] seg_index = 0 __parsed_outputs.extend(await parse_wh_question(raw_segmented_list, pgph_i)) seg_index = 0 elif (o['style'] == QType.STMT): print(o['content']) # remove_after_dash_and_parentheses stmts = [ sub(r" - .*| \(.*\)", "", x.split('. ',1)[1]) for x in o['content'].split('\n') if bool(match("^\d+\.", x))] # print(stmts) __parsed_outputs.extend(await parse_stmt_question(stmts, pgph_i, request.path_params.get('lang', lang.VI_VN))) # Return the question data if len(__parsed_outputs): return JSONResponse({"questions": __parsed_outputs, "paragraphs": __ps, "title": __cont[0]}) else: raise HTTPException(500) async def scan2OCR(request): content = b'' ret = [] async with request.form(max_files=10, max_fields=20) as form: for i in range(int(form['uploads'])): # Get random file ID file_id = sys_random.randbytes(12).hex() # Load image using PIL and convert to opencv grayscale format im = Image.open(BytesIO(await form[f'upload_{i}'].read())) # # Perform image preprocessing # processed_im = cv2.cvtColor(np.array(im), cv2.COLOR_RGB2GRAY) # cv2.imwrite(f"{file_id}.png", processed_im) # out = pytesseract.image_to_string(f"{file_id}.png", lang="vie", config=r'--psm 4') # os.remove(f"{file_id}.png") _loop = asyncio.get_running_loop() _out = await _loop.run_in_executor(None, partial(__ocr, im, file_id)) out = await _out # adapt the output text to the HTML-based rich text editor ret.append({"content": out.replace('\n','
')}) return JSONResponse(ret, 200) async def convert2html(request): content = b'' filename = "" output = "" files = [] rets = [] async with request.form(max_files=10, max_fields=20) as form: print(form['uploads']) for i in range(int(form['uploads'])): # Get random file ID filename = sys_random.randbytes(12).hex() ext = form[f'upload_{i}'].filename.split(".")[-1] content = await form[f'upload_{i}'].read() with open(f"{filename}.{ext}", 'wb') as o: o.write(content) files.append(f"{filename}.{ext}") for file in files: try: output = await __convert_file(file, "html") print(output) except Exception as e: app_logger.error(e) return JSONResponse({"detail": ""}, status_code=422) # Extract image sources from document imgs = [] start = -1 for i in range(len(output)): if output[i:i+4] == "" and start != -1: img_tag = output[start:i+2] imgs.append(img_tag) start = -1 for x in imgs: output = output.replace(x, " ") # Remove upload file os.remove(file) rets.append({"content": output, "resources": imgs}) return JSONResponse(rets) async def llm_generate_text(request): async with httpx.AsyncClient() as client: o = await request.json() _r = await client.post( url="https://api.awanllm.com/v1/chat/completions", headers={'Content-Type': 'application/json', 'Authorization': f'Bearer {get_llm_api_key()}'}, data=json.dumps({ "model": "Meta-Llama-3-8B-Instruct", "messages": [ {"role": "user", "content": f"Generate a study note about {o['prompt']}. Use {o['lang']}."} ], "max_tokens": 4096, "presence_penalty":0.3, "temperature":0.5 }), timeout=None) try: if _r.status_code != 200: raise HTTPException(status_code=429, detail=str(_r.json())) repl = _r.json()['choices'][0]['message']['content'] # input, type_out="plain", type_in="html" repl = await __convert_text(repl, "html-raw_html", "markdown") return PlainTextResponse(repl) except Exception as e: raise HTTPException(status_code=422, detail=str(e)) async def get_flashcards(request): # [title, content, keywords] __file = await __internal_tmp_r(request.path_params['id']) __content = __file[1] __lang = request.path_params['lang'] __keywords = [r.strip() for r in __file[2] if len(r) > 0] __tldr = await tldr(__content, __lang) print(__tldr) __definitions = await get_definitions_from_words(__keywords, __tldr, __lang) print(__definitions) return JSONResponse({"tldr": __tldr, "defs": __definitions, "imgs": await fetch_img_for_words(__keywords)}) """ Similarity validation """ w2v_vi = KeyedVectors.load_word2vec_format('wiki.vi.model.bin', binary=True) # w2v_en = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin',binary=True) vocab_vi = w2v_vi.key_to_index # vocab_en = w2v_en.vocab from underthesea import word_tokenize from nltk.tokenize import word_tokenize as word_tokenize_en from numpy import zeros,zeros_like from scipy.spatial.distance import cosine import warnings async def validate_similarity(request): req = await request.json() sent1, sent2 = req['sentences'] l = req['lang'] if (l == lang.VI_VN): tokens1 = word_tokenize(sent1.lower()) tokens2 = word_tokenize(sent2.lower()) else: tokens1 = word_tokenize_en(sent1.lower()) tokens2 = word_tokenize_en(sent2.lower()) vect1 = zeros_like(w2v_vi.get_vector('an')) vect2 = zeros_like(w2v_vi.get_vector('an')) for t in tokens1: if t in vocab_vi: vect1 += w2v_vi.get_vector(t) for t in tokens2: if t in vocab_vi: vect2 += w2v_vi.get_vector(t) # Calculate similarity using cosine similarity: This metric measures the cosine of the angle between two embedding vectors. A higher cosine similarity indicates more similar sentences. with warnings.catch_warnings(): warnings.simplefilter('error', RuntimeWarning) try: sim = 1 - cosine(vect1, vect2) >= 0.8 except RuntimeWarning as e: return JSONResponse({"isSimilar": "False"}) return JSONResponse({"isSimilar": str(sim)}) async def get_cached_img_from_disk(request): _fn = request.path_params['fn'] # /images/img_-3711971785602203114.webp HTTP/1.1" if _fn.startswith('img_') and _fn.endswith('.webp'): return FileResponse(_fn) else: raise HTTPException(404) async def generate_redemption(request): req = await request.json() paragraphs = req['pgphs'] ret_questions = [] ptasks = [] for paragraph in paragraphs: ptasks.append(__query_ml_predict(QType.WH, paragraph["content"], paragraph["header"], 4096, num_qs=paragraph.get("count", 1)*5, l=req['lang'])) raw_questions: list[str] = await asyncio.gather(*ptasks) for query in raw_questions: if not query['success']: continue q = query['content'] raw_segments = [x.strip() for x in q.split('\n') if x.strip()] filtered = [] seg_cnt = 0 seg_map = ['Q', 'A', 'B', 'C', 'D', ''] for r in raw_segments: if r.startswith(seg_map[seg_cnt]): if seg_cnt == 5: if not ('A' in r or 'B' in r or 'C' in r or 'D' in r): continue filtered.append(r) seg_cnt += 1 if seg_cnt == 6: _r = filtered[5] ans_index = 1 if 'A' in _r else 2 if 'B' in _r else 4 if 'D' in _r else 3 ans_key = filtered[ans_index][2:].strip() if randint(0, 1) == 1: ret_questions.append({'prompt': filtered[0], 'keys': [ans_key,]}) else: prompt_format = "\n".join(filtered[0:5]) ret_questions.append({'prompt': prompt_format, 'keys': [seg_map[ans_index]]}) filtered.clear() seg_cnt = 0 return JSONResponse({'questions': ret_questions}) async def root(requests): return PlainTextResponse("Success") # Application entry point routes = ... middleware = [ Middleware( CORSMiddleware, allow_origins=['http://localhost:8100', 'https://text2quiz-three.vercel.app'], allow_methods =['*'], ), Middleware(APIGuardMiddleware), ] app = Starlette(debug=True,routes=[ Route('/getFlashcards/{id}/{lang}', get_flashcards, methods=['GET']), Route('/convert2html',convert2html, methods=['POST']), Route('/scan2ocr', scan2OCR, methods=['POST']), Route('/temp', __save_temp, methods=['POST']), Route('/temp/{id}', __get_temp, methods=['GET']), Route('/temp/{id}', __remove_temp, methods=['DELETE']), # Route('/generateQuiz/{id}', generate_questions, methods=['GET']), Route('/generateQuiz/{id}/{lang}', generate_questions, methods=['GET']), # /images/img_-3711971785602203114.webp HTTP/1.1" Route('/images/{fn}', get_cached_img_from_disk, methods=['GET']), Route('/convert2md', convert2md, methods=['POST']), Route('/mltest', __mltest, methods=['GET']), Route('/validateSimilarity', validate_similarity, methods=['POST']), Route('/llmGenerateText', llm_generate_text, methods=['POST']), Route('/generateRedemption', generate_redemption, methods=['POST']), Route('/', root, methods=['GET']), ], middleware=middleware) import os print("running at: " + os.getcwd())