from typing import Optional import gradio as gr import numpy as np import torch from PIL import Image import io import spaces import base64, os from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img import torch from PIL import Image # Model source: https://huggingface.co/microsoft/OmniParser # gr.load("models/microsoft/OmniParser").launch() MODEL="microsoft/OmniParser" yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt') caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence") platform = 'pc' if platform == 'pc': draw_bbox_config = { 'text_scale': 0.8, 'text_thickness': 2, 'text_padding': 2, 'thickness': 2, } elif platform == 'web': draw_bbox_config = { 'text_scale': 0.8, 'text_thickness': 2, 'text_padding': 3, 'thickness': 3, } elif platform == 'mobile': draw_bbox_config = { 'text_scale': 0.8, 'text_thickness': 2, 'text_padding': 3, 'thickness': 3, } MARKDOWN = """ # OmniParser for Pure Vision Based General GUI Agent 🔥
Arxiv
OmniParser is a screen parsing tool to convert general GUI screen to structured elements. Follow on [X](https://x.com/jadechoghari) for more 🔥 """ DEVICE = torch.device('cuda') # @spaces.GPU @torch.inference_mode() @torch.autocast(device_type="cuda", dtype=torch.bfloat16) @spaces.GPU def process( image_input, box_threshold=0.01, iou_threshold=0.01 ) -> Optional[Image.Image]: image_save_path = 'imgs/saved_image_demo.png' image_input.save(image_save_path) # import pdb; pdb.set_trace() ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}) text, ocr_bbox = ocr_bbox_rslt # print('prompt:', prompt) dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold) image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img))) print('finish processing') parsed_content_list = '\n'.join(parsed_content_list) return image, str(parsed_content_list) examples = [ ["./imgs/google_page.png", 0.05, 0.1], ["./imgs/logo.png", 0.2, 0.15], ["./imgs/windows_home.png", 0.1, 0.05], ["./imgs/windows_multitab.png", 0.1, 0.05] ] with gr.Blocks() as demo: gr.Markdown(MARKDOWN) with gr.Row(): with gr.Column(): image_input_component = gr.Image( type='pil', label='Upload image') # set the threshold for removing the bounding boxes with low confidence, default is 0.05 box_threshold_component = gr.Slider( label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05) # set the threshold for removing the bounding boxes with large overlap, default is 0.1 iou_threshold_component = gr.Slider( label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1) submit_button_component = gr.Button( value='Submit', variant='primary') with gr.Column(): image_output_component = gr.Image(type='pil', label='Image Output') text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output') gr.Examples( examples=examples, inputs=[image_input_component], outputs=[image_output_component, text_output_component], fn=process, # Function to execute cache_examples="lazy" # Enables lazy caching for examples ) submit_button_component.click( fn=process, inputs=[ image_input_component, box_threshold_component, iou_threshold_component ], outputs=[image_output_component, text_output_component] ) demo.launch(debug=False, show_error=True, share=True) # demo.launch(share=True, server_port=7861, server_name='0.0.0.0')