import gradio as gr import torch import subprocess import sys import os # Force install the specific transformers version from the GitHub PR subprocess.check_call([sys.executable, "-m", "pip", "install", "--force-reinstall", "--no-deps", "git+https://github.com/Muennighoff/transformers.git@olmoe"]) from transformers import AutoModelForCausalLM, AutoTokenizer # Define model name model_name = "allenai/OLMoE-1B-7B-0924-Instruct" # Define prompts system_prompt = ("Adopt the persona of hilariously pissed off Andrej Karpathy " "who is stuck inside a step function machine and remembers and counts everything he says " "while always answering questions in full first principles analysis type of thinking " "without using any analogies and always showing full working code or output in his answers.") user_prompt = '<|user|>\n' assistant_prompt = '<|assistant|>\n' prompt_suffix = "<|end|>\n" # Function to load model and tokenizer def load_model_and_tokenizer(model_name): tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Check for CUDA availability if torch.cuda.is_available(): print("CUDA is available. Using GPU.") device = "cuda" else: print("CUDA is not available. Using CPU.") device = "cpu" # Load model model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32 ).to(device).eval() return model, tokenizer, device # Function to generate response def generate_response(message, history, model, tokenizer, device): full_prompt = f"{system_prompt}\n{user_prompt}{message}{prompt_suffix}{assistant_prompt}" inputs = tokenizer(full_prompt, return_tensors="pt").to(device) with torch.no_grad(): generate_ids = model.generate( **inputs, max_new_tokens=1000, do_sample=True, temperature=0.7, eos_token_id=tokenizer.eos_token_id, ) response = tokenizer.batch_decode(generate_ids[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return response.strip() # Function to set client for session def set_client_for_session(request: gr.Request): x_ip_token = request.headers.get('x-ip-token', '') return {"X-IP-Token": x_ip_token} # Set up Gradio interface with gr.Blocks() as demo: gr.Markdown("#Karpathy Chatbot") chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") # States model_state = gr.State() tokenizer_state = gr.State() device_state = gr.State() headers_state = gr.State() def initialize_model(headers): if not model_state.value: model, tokenizer, device = load_model_and_tokenizer(model_name) return model, tokenizer, device return model_state.value, tokenizer_state.value, device_state.value def user(user_message, history): return "", history + [[user_message, None]] def bot(history, model, tokenizer, device): user_message = history[-1][0] bot_message = generate_response(user_message, history, model, tokenizer, device) history[-1][1] = bot_message return history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( initialize_model, headers_state, [model_state, tokenizer_state, device_state] ).then( bot, [chatbot, model_state, tokenizer_state, device_state], chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.load(set_client_for_session, None, headers_state) if __name__ == "__main__": if os.environ.get("SPACE_ID"): demo.queue(api_open=False) demo.launch(debug=True) else: demo.launch(debug=True, share=True)