import gradio as gr import spaces import random import torch from diffusers import FluxPipeline from huggingface_hub.utils import RepositoryNotFoundError pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16) pipeline.load_lora_weights("pepper13/fluxfw").to("cuda") with open("main.css", "r") as css: link = css @spaces.GPU(duration=70) def generate(prompt): return pipeline( prompt=prompt, width=512, height=512, num_inference_steps=20, generator=torch.Generator("cpu").manual_seed(random.randint(42, 69)), guidance_scale=7 ).images[0] with gr.Blocks(css=link) as interface: with gr.Column(elem_classes="interface-container"): prompt = gr.Textbox( label="Prompt", info="Describe the image you want to generate.", value="Keanu Reeves holding a neon sign reading 'Hello, world!', 32k HDR, paparazzi", lines=1, interactive=True, elem_classes="text-box" ) generate_button = gr.Button("Generate Image", elem_classes="btn") output = gr.Image(elem_classes="image-output") generate_button.click( fn=generate, inputs=[prompt], outputs=[output] ) if __name__ == "__main__": interface.launch()