# Modified from OpenAI's diffusion repos # GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py # ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion # IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py import numpy as np import torch as th def normal_kl(mean1, logvar1, mean2, logvar2): """ Compute the KL divergence between two gaussians. Shapes are automatically broadcasted, so batches can be compared to scalars, among other use cases. """ tensor = None for obj in (mean1, logvar1, mean2, logvar2): if isinstance(obj, th.Tensor): tensor = obj break assert tensor is not None, "at least one argument must be a Tensor" # Force variances to be Tensors. Broadcasting helps convert scalars to # Tensors, but it does not work for th.exp(). logvar1, logvar2 = [ x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) for x in (logvar1, logvar2) ] return 0.5 * ( -1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * th.exp(-logvar2) ) def approx_standard_normal_cdf(x): """ A fast approximation of the cumulative distribution function of the standard normal. """ return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) def continuous_gaussian_log_likelihood(x, *, means, log_scales): """ Compute the log-likelihood of a continuous Gaussian distribution. :param x: the targets :param means: the Gaussian mean Tensor. :param log_scales: the Gaussian log stddev Tensor. :return: a tensor like x of log probabilities (in nats). """ centered_x = x - means inv_stdv = th.exp(-log_scales) normalized_x = centered_x * inv_stdv log_probs = th.distributions.Normal(th.zeros_like(x), th.ones_like(x)).log_prob( normalized_x ) return log_probs def discretized_gaussian_log_likelihood(x, *, means, log_scales): """ Compute the log-likelihood of a Gaussian distribution discretizing to a given image. :param x: the target images. It is assumed that this was uint8 values, rescaled to the range [-1, 1]. :param means: the Gaussian mean Tensor. :param log_scales: the Gaussian log stddev Tensor. :return: a tensor like x of log probabilities (in nats). """ assert x.shape == means.shape == log_scales.shape centered_x = x - means inv_stdv = th.exp(-log_scales) plus_in = inv_stdv * (centered_x + 1.0 / 255.0) cdf_plus = approx_standard_normal_cdf(plus_in) min_in = inv_stdv * (centered_x - 1.0 / 255.0) cdf_min = approx_standard_normal_cdf(min_in) log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) cdf_delta = cdf_plus - cdf_min log_probs = th.where( x < -0.999, log_cdf_plus, th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), ) assert log_probs.shape == x.shape return log_probs