# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.attention.flex_attention import BlockMask, flex_attention class Mlp(nn.Module): """MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, norm_layer=None, bias=True, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features linear_layer = nn.Linear self.fc1 = linear_layer(in_features, hidden_features, bias=bias) self.act = act_layer() self.norm = ( norm_layer(hidden_features) if norm_layer is not None else nn.Identity() ) self.fc2 = linear_layer(hidden_features, out_features, bias=bias) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.norm(x) x = self.fc2(x) return x class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float = 1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()).type_as(x) return output * self.weight class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, ) -> None: super().__init__() assert dim % num_heads == 0, "dim should be divisible by num_heads" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) self.q_norm = RMSNorm(self.head_dim, eps=1e-5) self.k_norm = RMSNorm(self.head_dim, eps=1e-5) def forward(self, x: torch.Tensor, attn_mask=None) -> torch.Tensor: B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, self.head_dim) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv.unbind(0) if isinstance(attn_mask, torch.Tensor) or attn_mask is None: q = self.q_norm(q) k = self.k_norm(k) # v = v x = F.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, ) elif isinstance(attn_mask, BlockMask): with torch.autocast(enabled=False, device_type="cuda"): q = self.q_norm(q).half() k = self.k_norm(k).half() v = v.half() x = flex_attention(q, k, v, block_mask=attn_mask) x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) return x def modulate(x, shift, scale): return x * (1 + scale) + shift ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat( [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 ) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() # use last class as unconditional value use_cfg_embedding = dropout_prob > 0 if use_cfg_embedding: self.unconditional_value = num_classes - 1 self.speaker_id_table = nn.Embedding(num_classes, hidden_size) self.phone_table = nn.Embedding(num_classes, hidden_size) self.phone_kind_table = nn.Embedding(num_classes, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, speaker_id, phone, phone_kind, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = ( torch.rand(speaker_id.shape[0], device=speaker_id.device) < self.dropout_prob ) else: drop_ids = force_drop_ids == 1 speaker_id = torch.where( drop_ids[:, None], self.unconditional_value, speaker_id ) phone = torch.where(drop_ids[:, None], self.unconditional_value, phone) phone_kind = torch.where( drop_ids[:, None], self.unconditional_value, phone_kind ) return speaker_id, phone, phone_kind def forward(self, speaker_id, phone, phone_kind, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): speaker_id, phone, phone_kind = self.token_drop( speaker_id, phone, phone_kind, force_drop_ids ) speaker_id_embeddings = self.speaker_id_table(speaker_id) phone_embeddings = self.phone_table(phone) phone_kind_embeddings = self.phone_kind_table(phone_kind) return speaker_id_embeddings, phone_embeddings, phone_kind_embeddings ################################################################################# # Core DiT Model # ################################################################################# class DiTBlock(nn.Module): """ A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = Attention( hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs ) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) self.mlp = Mlp( in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=nn.SiLU, ) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True), ) def forward(self, x, c, attn_mask=None): shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.adaLN_modulation(c).chunk(6, dim=-1) ) x = x + gate_msa * self.attn( modulate(self.norm1(x), shift_msa, scale_msa), attn_mask=attn_mask ) x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) return x class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear( hidden_size, patch_size * patch_size * out_channels, bias=True ) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True), ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class DiT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_size=256, in_channels=1024, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, learn_sigma=True, embedding_vocab_size=1024, ): super().__init__() self.input_size = input_size self.learn_sigma = learn_sigma self.in_channels = in_channels self.hidden_size = hidden_size self.out_channels = in_channels * 2 if learn_sigma else in_channels self.num_heads = num_heads self.x_embedder = nn.Linear(in_channels, hidden_size, bias=True) self.t_embedder = TimestepEmbedder(hidden_size) self.y_embedder = LabelEmbedder( embedding_vocab_size, hidden_size, class_dropout_prob ) # Will use fixed sin-cos embedding: self.register_buffer("pos_embed", torch.zeros(1, self.input_size, hidden_size)) self.blocks = nn.ModuleList( [ DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth) ] ) self.final_layer = FinalLayer(hidden_size, 1, self.out_channels) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize (and freeze) pos_embed by sin-cos embedding: pos_embed = get_1d_sincos_pos_embed(self.pos_embed.shape[-1], self.input_size) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): w = self.x_embedder.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) nn.init.constant_(self.x_embedder.bias, 0) # Initialize label embedding table: scale = 1.0 / math.sqrt(self.hidden_size) nn.init.trunc_normal_(self.y_embedder.speaker_id_table.weight, std=scale) nn.init.trunc_normal_(self.y_embedder.phone_table.weight, std=scale) # Initialize timestep embedding MLP: nn.init.trunc_normal_(self.t_embedder.mlp[0].weight, std=scale) nn.init.trunc_normal_(self.t_embedder.mlp[2].weight, std=scale) # Zero-out adaLN modulation layers in DiT blocks: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) def forward(self, x, t, speaker_id, phone, phone_kind, attn_mask=None): """ Forward pass of DiT. x: (N, C, L) tensor of spatial inputs t: (N,) tensor of diffusion timesteps speaker_id: (N,) tensor of speaker IDs phone: (N, L) tensor of phone labels phone_kind: (N, L) tensor of phone kinds """ # (N, D), (N, L, D) speaker_id_embedding, phone_embedding, phone_kind_embedding = self.y_embedder( speaker_id, phone, phone_kind, self.training ) t = self.t_embedder(t) # (N, D) c = t # (N, D) c = ( c[:, None, :] + speaker_id_embedding + phone_embedding + phone_kind_embedding ) # (N, L, D) x = x.transpose(-1, -2) # Swap last two dimensions x = self.x_embedder(x) + self.pos_embed[:, : x.shape[1], :] # (N, L, D) for block in self.blocks: x = block(x, c, attn_mask=attn_mask) # (N, L, D) x = self.final_layer(x, c) # (N, L, 2 * out_channels) x = x.transpose(-1, -2) # Swap last two dimensions return x def forward_with_cfg( self, x, t, speaker_id, phone, phone_kind, cfg_scale, attn_mask=None ): """ Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. """ # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb half = x[: len(x) // 2] combined = torch.cat([half, half], dim=0) model_out = self.forward( combined, t, speaker_id, phone, phone_kind, attn_mask=attn_mask ) # For exact reproducibility reasons, we apply classifier-free guidance on only # three channels by default. The standard approach to cfg applies it to all channels. # This can be done by uncommenting the following line and commenting-out the line following that. eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :] # eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return torch.cat([eps, rest], dim=1) ################################################################################# # Sine/Cosine Positional Embedding Functions # ################################################################################# # https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py def get_1d_sincos_pos_embed(embed_dim, length, cls_token=False, extra_tokens=0): """ length: int of the length return: pos_embed: [length, embed_dim] or [1+length, embed_dim] (w/ or w/o cls_token) """ grid = np.arange(length, dtype=np.float32) pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate( [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0 ) return pos_embed def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb ################################################################################# ################################################################################# # DiT Configs # ################################################################################# def DiT_XL(**kwargs): return DiT(depth=28, hidden_size=1152, num_heads=16, **kwargs) def DiT_L(**kwargs): return DiT(depth=24, hidden_size=1024, num_heads=16, **kwargs) def DiT_B(**kwargs): return DiT(depth=12, hidden_size=768, num_heads=12, **kwargs) def DiT_S(**kwargs): return DiT(depth=6, hidden_size=256, num_heads=4, **kwargs) DiT_models = {"DiT-XL": DiT_XL, "DiT-L": DiT_L, "DiT-B": DiT_B, "DiT-S": DiT_S}