# Local_LLM_Inference_Engine_Lib.py ######################################### # Local LLM Inference Engine Library # This library is used to handle downloading, configuring, and launching the Local LLM Inference Engine # via (llama.cpp via llamafile) # # #### #################### # Function List # # 1. download_latest_llamafile(repo, asset_name_prefix, output_filename) # 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5) # 3. verify_checksum(file_path, expected_checksum) # 4. cleanup_process() # 5. signal_handler(sig, frame) # 6. local_llm_function() # 7. launch_in_new_terminal_windows(executable, args) # 8. launch_in_new_terminal_linux(executable, args) # 9. launch_in_new_terminal_mac(executable, args) # #################### # Import necessary libraries from asyncio import subprocess import atexit import re import sys import time # Import 3rd-pary Libraries # # Import Local from Article_Summarization_Lib import * from App_Function_Libraries.Utils import download_file # # ####################################################################################################################### # Function Definitions # # Download latest llamafile from Github # Example usage #repo = "Mozilla-Ocho/llamafile" #asset_name_prefix = "llamafile-" #output_filename = "llamafile" #download_latest_llamafile(repo, asset_name_prefix, output_filename) # THIS SHOULD ONLY BE CALLED IF THE USER IS USING THE GUI TO SETUP LLAMAFILE # Function is used to download only llamafile def download_latest_llamafile_no_model(output_filename): # Check if the file already exists print("Checking for and downloading Llamafile it it doesn't already exist...") if os.path.exists(output_filename): print("Llamafile already exists. Skipping download.") logging.debug(f"{output_filename} already exists. Skipping download.") llamafile_exists = True else: llamafile_exists = False if llamafile_exists == True: pass else: # Establish variables for Llamafile download repo = "Mozilla-Ocho/llamafile" asset_name_prefix = "llamafile-" # Get the latest release information latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest" response = requests.get(latest_release_url) if response.status_code != 200: raise Exception(f"Failed to fetch latest release info: {response.status_code}") latest_release_data = response.json() tag_name = latest_release_data['tag_name'] # Get the release details using the tag name release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}" response = requests.get(release_details_url) if response.status_code != 200: raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}") release_data = response.json() assets = release_data.get('assets', []) # Find the asset with the specified prefix asset_url = None for asset in assets: if re.match(f"{asset_name_prefix}.*", asset['name']): asset_url = asset['browser_download_url'] break if not asset_url: raise Exception(f"No asset found with prefix {asset_name_prefix}") # Download the asset response = requests.get(asset_url) if response.status_code != 200: raise Exception(f"Failed to download asset: {response.status_code}") print("Llamafile downloaded successfully.") logging.debug("Main: Llamafile downloaded successfully.") # Save the file with open(output_filename, 'wb') as file: file.write(response.content) logging.debug(f"Downloaded {output_filename} from {asset_url}") print(f"Downloaded {output_filename} from {asset_url}") return output_filename # FIXME - Add option in GUI for selecting the other models for download # Should only be called from 'local_llm_gui_function' - if its called from anywhere else, shits broken. # Function is used to download llamafile + A model from Huggingface def download_latest_llamafile_through_gui(repo, asset_name_prefix, output_filename): # Check if the file already exists print("Checking for and downloading Llamafile it it doesn't already exist...") if os.path.exists(output_filename): print("Llamafile already exists. Skipping download.") logging.debug(f"{output_filename} already exists. Skipping download.") llamafile_exists = True else: llamafile_exists = False if llamafile_exists == True: pass else: # Get the latest release information latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest" response = requests.get(latest_release_url) if response.status_code != 200: raise Exception(f"Failed to fetch latest release info: {response.status_code}") latest_release_data = response.json() tag_name = latest_release_data['tag_name'] # Get the release details using the tag name release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}" response = requests.get(release_details_url) if response.status_code != 200: raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}") release_data = response.json() assets = release_data.get('assets', []) # Find the asset with the specified prefix asset_url = None for asset in assets: if re.match(f"{asset_name_prefix}.*", asset['name']): asset_url = asset['browser_download_url'] break if not asset_url: raise Exception(f"No asset found with prefix {asset_name_prefix}") # Download the asset response = requests.get(asset_url) if response.status_code != 200: raise Exception(f"Failed to download asset: {response.status_code}") print("Llamafile downloaded successfully.") logging.debug("Main: Llamafile downloaded successfully.") # Save the file with open(output_filename, 'wb') as file: file.write(response.content) logging.debug(f"Downloaded {output_filename} from {asset_url}") print(f"Downloaded {output_filename} from {asset_url}") # Check to see if the LLM already exists, and if not, download the LLM print("Checking for and downloading LLM from Huggingface if needed...") logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") mistral_7b_instruct_v0_2_q8_0_llamafile = "mistral-7b-instruct-v0.2.Q8_0.llamafile" Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8 = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" Phi_3_mini_128k_instruct_Q8_0_gguf = "Phi-3-mini-128k-instruct-Q8_0.gguf" if os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" print("Model is already downloaded. Skipping download.") pass elif os.path.exists(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8): llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" print("Model is already downloaded. Skipping download.") pass elif os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" print("Model is already downloaded. Skipping download.") pass else: logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") print("Downloading LLM from Huggingface...") time.sleep(1) print("Gonna be a bit...") time.sleep(1) print("Like seriously, an 8GB file...") time.sleep(2) # Not needed for GUI # dl_check = input("Final chance to back out, hit 'N'/'n' to cancel, or 'Y'/'y' to continue: ") #if dl_check == "N" or dl_check == "n": # exit() x = 2 if x != 1: print("Uhhhh how'd you get here...?") exit() else: print("Downloading LLM from Huggingface...") # Establish hash values for LLM models mistral_7b_instruct_v0_2_q8_gguf_sha256 = "f326f5f4f137f3ad30f8c9cc21d4d39e54476583e8306ee2931d5a022cb85b06" samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" global llm_choice # FIXME - llm_choice llm_choice = 2 llm_choice = input("Which LLM model would you like to download? 1. Mistral-7B-Instruct-v0.2-GGUF or 2. Samantha-Mistral-Instruct-7B-Bulleted-Notes) (plain or 'custom') or MS Flavor: Phi-3-mini-128k-instruct-Q8_0.gguf \n\n\tPress '1' or '2' or '3' to specify: ") while llm_choice != "1" and llm_choice != "2" and llm_choice != "3": print("Invalid choice. Please try again.") if llm_choice == "1": llm_download_model = "Mistral-7B-Instruct-v0.2-Q8.llamafile" mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" llm_download_model_hash = mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" llamafile_llm_output_filename = "mistral-7b-instruct-v0.2.Q8_0.llamafile" download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) elif llm_choice == "2": llm_download_model = "Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8.gguf" samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" llm_download_model_hash = samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 llamafile_llm_output_filename = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" llamafile_llm_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b-bulleted-notes-GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true" download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) elif llm_choice == "3": llm_download_model = "Phi-3-mini-128k-instruct-Q8_0.gguf" Phi_3_mini_128k_instruct_Q8_0_gguf_sha256 = "6817b66d1c3c59ab06822e9732f0e594eea44e64cae2110906eac9d17f75d193" llm_download_model_hash = Phi_3_mini_128k_instruct_Q8_0_gguf_sha256 llamafile_llm_output_filename = "Phi-3-mini-128k-instruct-Q8_0.gguf" llamafile_llm_url = "https://huggingface.co/gaianet/Phi-3-mini-128k-instruct-GGUF/resolve/main/Phi-3-mini-128k-instruct-Q8_0.gguf?download=true" download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) elif llm_choice == "4": # FIXME - and meta_Llama_3_8B_Instruct_Q8_0_llamafile_exists == False: meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256 = "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37" llm_download_model_hash = meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256 llamafile_llm_output_filename = " Meta-Llama-3-8B-Instruct.Q8_0.llamafile" llamafile_llm_url = "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true" else: print("Invalid choice. Please try again.") return output_filename # Maybe replace/ dead code? FIXME # Function is used to download llamafile + A model from Huggingface def download_latest_llamafile(repo, asset_name_prefix, output_filename): # Check if the file already exists print("Checking for and downloading Llamafile it it doesn't already exist...") if os.path.exists(output_filename): print("Llamafile already exists. Skipping download.") logging.debug(f"{output_filename} already exists. Skipping download.") llamafile_exists = True else: llamafile_exists = False if llamafile_exists == True: pass else: # Get the latest release information latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest" response = requests.get(latest_release_url) if response.status_code != 200: raise Exception(f"Failed to fetch latest release info: {response.status_code}") latest_release_data = response.json() tag_name = latest_release_data['tag_name'] # Get the release details using the tag name release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}" response = requests.get(release_details_url) if response.status_code != 200: raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}") release_data = response.json() assets = release_data.get('assets', []) # Find the asset with the specified prefix asset_url = None for asset in assets: if re.match(f"{asset_name_prefix}.*", asset['name']): asset_url = asset['browser_download_url'] break if not asset_url: raise Exception(f"No asset found with prefix {asset_name_prefix}") # Download the asset response = requests.get(asset_url) if response.status_code != 200: raise Exception(f"Failed to download asset: {response.status_code}") print("Llamafile downloaded successfully.") logging.debug("Main: Llamafile downloaded successfully.") # Save the file with open(output_filename, 'wb') as file: file.write(response.content) logging.debug(f"Downloaded {output_filename} from {asset_url}") print(f"Downloaded {output_filename} from {asset_url}") # Check to see if the LLM already exists, and if not, download the LLM print("Checking for and downloading LLM from Huggingface if needed...") logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") mistral_7b_instruct_v0_2_q8_0_llamafile = "mistral-7b-instruct-v0.2.Q8_0.llamafile" Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8 = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" Phi_3_mini_128k_instruct_Q8_0_gguf = "Phi-3-mini-128k-instruct-Q8_0.gguf" if os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" print("Model is already downloaded. Skipping download.") pass elif os.path.exists(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8): llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" print("Model is already downloaded. Skipping download.") pass elif os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile): llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" print("Model is already downloaded. Skipping download.") pass else: logging.debug("Main: Checking and downloading LLM from Huggingface if needed...") print("Downloading LLM from Huggingface...") time.sleep(1) print("Gonna be a bit...") time.sleep(1) print("Like seriously, an 8GB file...") time.sleep(2) dl_check = input("Final chance to back out, hit 'N'/'n' to cancel, or 'Y'/'y' to continue: ") if dl_check == "N" or dl_check == "n": exit() else: print("Downloading LLM from Huggingface...") # Establish hash values for LLM models mistral_7b_instruct_v0_2_q8_gguf_sha256 = "f326f5f4f137f3ad30f8c9cc21d4d39e54476583e8306ee2931d5a022cb85b06" samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" # FIXME - llm_choice llm_choice = 2 llm_choice = input("Which LLM model would you like to download? 1. Mistral-7B-Instruct-v0.2-GGUF or 2. Samantha-Mistral-Instruct-7B-Bulleted-Notes) (plain or 'custom') or MS Flavor: Phi-3-mini-128k-instruct-Q8_0.gguf \n\n\tPress '1' or '2' or '3' to specify: ") while llm_choice != "1" and llm_choice != "2" and llm_choice != "3": print("Invalid choice. Please try again.") if llm_choice == "1": llm_download_model = "Mistral-7B-Instruct-v0.2-Q8.llamafile" mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" llm_download_model_hash = mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" llamafile_llm_output_filename = "mistral-7b-instruct-v0.2.Q8_0.llamafile" download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) elif llm_choice == "2": llm_download_model = "Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8.gguf" samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" llm_download_model_hash = samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 llamafile_llm_output_filename = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" llamafile_llm_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b_bulleted-notes_GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true" download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) elif llm_choice == "3": llm_download_model = "Phi-3-mini-128k-instruct-Q8_0.gguf" Phi_3_mini_128k_instruct_Q8_0_gguf_sha256 = "6817b66d1c3c59ab06822e9732f0e594eea44e64cae2110906eac9d17f75d193" llm_download_model_hash = Phi_3_mini_128k_instruct_Q8_0_gguf_sha256 llamafile_llm_output_filename = "Phi-3-mini-128k-instruct-Q8_0.gguf" llamafile_llm_url = "https://huggingface.co/gaianet/Phi-3-mini-128k-instruct-GGUF/resolve/main/Phi-3-mini-128k-instruct-Q8_0.gguf?download=true" download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash) elif llm_choice == "4": # FIXME - and meta_Llama_3_8B_Instruct_Q8_0_llamafile_exists == False: meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256 = "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37" llm_download_model_hash = meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256 llamafile_llm_output_filename = " Meta-Llama-3-8B-Instruct.Q8_0.llamafile" llamafile_llm_url = "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true" else: print("Invalid choice. Please try again.") return output_filename # FIXME / IMPLEMENT FULLY # File download verification #mistral_7b_llamafile_instruct_v02_q8_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true" #global mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 #mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6" #mistral_7b_v02_instruct_model_q8_gguf_url = "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true" #global mistral_7b_instruct_v0_2_q8_gguf_sha256 #mistral_7b_instruct_v0_2_q8_gguf_sha256 = "f326f5f4f137f3ad30f8c9cc21d4d39e54476583e8306ee2931d5a022cb85b06" #samantha_instruct_model_q8_gguf_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b_bulleted-notes_GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true" #global samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 #samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4" process = None # Function to close out llamafile process on script exit. def cleanup_process(): global process if process is not None: process.kill() logging.debug("Main: Terminated the external process") def signal_handler(sig, frame): logging.info('Signal handler called with signal: %s', sig) cleanup_process() sys.exit(0) # FIXME - Add callout to gradio UI def local_llm_function(): global process repo = "Mozilla-Ocho/llamafile" asset_name_prefix = "llamafile-" useros = os.name if useros == "nt": output_filename = "llamafile.exe" else: output_filename = "llamafile" print( "WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while") print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...") print("WARNING - Hope you're comfy. Or it's already downloaded.") time.sleep(6) logging.debug("Main: Checking and downloading Llamafile from Github if needed...") llamafile_path = download_latest_llamafile(repo, asset_name_prefix, output_filename) logging.debug("Main: Llamafile downloaded successfully.") # FIXME - llm_choice global llm_choice llm_choice = 1 # Launch the llamafile in an external process with the specified argument if llm_choice == 1: arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"] elif llm_choice == 2: arguments = ["--ctx-size", "8192 ", " -m", "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"] elif llm_choice == 3: arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"] elif llm_choice == 4: arguments = ["--ctx-size", "8192 ", " -m", "llama-3"] # FIXME try: logging.info("Main: Launching the LLM (llamafile) in an external terminal window...") if useros == "nt": launch_in_new_terminal_windows(llamafile_path, arguments) elif useros == "posix": launch_in_new_terminal_linux(llamafile_path, arguments) else: launch_in_new_terminal_mac(llamafile_path, arguments) # FIXME - pid doesn't exist in this context #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") atexit.register(cleanup_process, process) except Exception as e: logging.error(f"Failed to launch the process: {e}") print(f"Failed to launch the process: {e}") # This function is used to dl a llamafile binary + the Samantha Mistral Finetune model. # It should only be called when the user is using the GUI to set up and interact with Llamafile. def local_llm_gui_function(am_noob, verbose_checked, threads_checked, threads_value, http_threads_checked, http_threads_value, model_checked, model_value, hf_repo_checked, hf_repo_value, hf_file_checked, hf_file_value, ctx_size_checked, ctx_size_value, ngl_checked, ngl_value, host_checked, host_value, port_checked, port_value): # Identify running OS useros = os.name if useros == "nt": output_filename = "llamafile.exe" else: output_filename = "llamafile" # Build up the commands for llamafile built_up_args = [] # Identify if the user wants us to do everything for them if am_noob == True: print("You're a noob. (lol j/k; they're good settings)") # Setup variables for Model download from HF repo = "Mozilla-Ocho/llamafile" asset_name_prefix = "llamafile-" print( "WARNING - Checking for existence of llamafile or HuggingFace model (GGUF type), downloading if needed...This could be a while") print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...") print("WARNING - Hope you're comfy. Or it's already downloaded.") time.sleep(6) logging.debug("Main: Checking for Llamafile and downloading from Github if needed...\n\tAlso checking for a " "local LLM model...\n\tDownloading if needed...\n\tThis could take a while...\n\tWill be the " "'samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf' model...") llamafile_path = download_latest_llamafile_through_gui(repo, asset_name_prefix, output_filename) logging.debug("Main: Llamafile downloaded successfully.") arguments = [] # FIXME - llm_choice # This is the gui, we can add this as options later llm_choice = 2 # Launch the llamafile in an external process with the specified argument if llm_choice == 1: arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"] elif llm_choice == 2: arguments = """--ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf""" elif llm_choice == 3: arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"] elif llm_choice == 4: arguments = ["--ctx-size", "8192 ", " -m", "llama-3"] try: logging.info("Main(Local-LLM-GUI-noob): Launching the LLM (llamafile) in an external terminal window...") if useros == "nt": command = 'start cmd /k "llamafile.exe --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"' subprocess.Popen(command, shell=True) elif useros == "posix": command = "llamafile --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" subprocess.Popen(command, shell=True) else: command = "llamafile.exe --ctx-size 8192 -m samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf" subprocess.Popen(command, shell=True) # FIXME - pid doesn't exist in this context # logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") atexit.register(cleanup_process, process) except Exception as e: logging.error(f"Failed to launch the process: {e}") print(f"Failed to launch the process: {e}") else: print("You're not a noob.") llamafile_path = download_latest_llamafile_no_model(output_filename) if verbose_checked == True: print("Verbose mode enabled.") built_up_args.append("--verbose") if threads_checked == True: print(f"Threads enabled with value: {threads_value}") built_up_args.append(f"--threads {threads_value}") if http_threads_checked == True: print(f"HTTP Threads enabled with value: {http_threads_value}") built_up_args.append(f"--http-threads {http_threads_value}") if model_checked == True: print(f"Model enabled with value: {model_value}") built_up_args.append(f"--model {model_value}") if hf_repo_checked == True: print(f"Huggingface repo enabled with value: {hf_repo_value}") built_up_args.append(f"--hf-repo {hf_repo_value}") if hf_file_checked == True: print(f"Huggingface file enabled with value: {hf_file_value}") built_up_args.append(f"--hf-file {hf_file_value}") if ctx_size_checked == True: print(f"Context size enabled with value: {ctx_size_value}") built_up_args.append(f"--ctx-size {ctx_size_value}") if ngl_checked == True: print(f"NGL enabled with value: {ngl_value}") built_up_args.append(f"--ngl {ngl_value}") if host_checked == True: print(f"Host enabled with value: {host_value}") built_up_args.append(f"--host {host_value}") if port_checked == True: print(f"Port enabled with value: {port_value}") built_up_args.append(f"--port {port_value}") # Lets go ahead and finally launch the bastard... try: logging.info("Main(Local-LLM-GUI-Main): Launching the LLM (llamafile) in an external terminal window...") if useros == "nt": launch_in_new_terminal_windows(llamafile_path, built_up_args) elif useros == "posix": launch_in_new_terminal_linux(llamafile_path, built_up_args) else: launch_in_new_terminal_mac(llamafile_path, built_up_args) # FIXME - pid doesn't exist in this context #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}") atexit.register(cleanup_process, process) except Exception as e: logging.error(f"Failed to launch the process: {e}") print(f"Failed to launch the process: {e}") # Launch the executable in a new terminal window # FIXME - really should figure out a cleaner way of doing this... def launch_in_new_terminal_windows(executable, args): command = f'start cmd /k "{executable} {" ".join(args)}"' subprocess.Popen(command, shell=True) # FIXME def launch_in_new_terminal_linux(executable, args): command = f'gnome-terminal -- {executable} {" ".join(args)}' subprocess.Popen(command, shell=True) # FIXME def launch_in_new_terminal_mac(executable, args): command = f'open -a Terminal.app {executable} {" ".join(args)}' subprocess.Popen(command, shell=True)