import os import torch import torch.nn as nn import cv2 import numpy as np from einops import rearrange from annotator.annotator_path import models_path, DEVICE class _bn_relu_conv(nn.Module): def __init__(self, in_filters, nb_filters, fw, fh, subsample=1): super(_bn_relu_conv, self).__init__() self.model = nn.Sequential( nn.BatchNorm2d(in_filters, eps=1e-3), nn.LeakyReLU(0.2), nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2), padding_mode='zeros') ) def forward(self, x): return self.model(x) # the following are for debugs print("****", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape) for i,layer in enumerate(self.model): if i != 2: x = layer(x) else: x = layer(x) #x = nn.functional.pad(x, (1, 1, 1, 1), mode='constant', value=0) print("____", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape) print(x[0]) return x class _u_bn_relu_conv(nn.Module): def __init__(self, in_filters, nb_filters, fw, fh, subsample=1): super(_u_bn_relu_conv, self).__init__() self.model = nn.Sequential( nn.BatchNorm2d(in_filters, eps=1e-3), nn.LeakyReLU(0.2), nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2)), nn.Upsample(scale_factor=2, mode='nearest') ) def forward(self, x): return self.model(x) class _shortcut(nn.Module): def __init__(self, in_filters, nb_filters, subsample=1): super(_shortcut, self).__init__() self.process = False self.model = None if in_filters != nb_filters or subsample != 1: self.process = True self.model = nn.Sequential( nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample) ) def forward(self, x, y): #print(x.size(), y.size(), self.process) if self.process: y0 = self.model(x) #print("merge+", torch.max(y0+y), torch.min(y0+y),torch.mean(y0+y), torch.std(y0+y), y0.shape) return y0 + y else: #print("merge", torch.max(x+y), torch.min(x+y),torch.mean(x+y), torch.std(x+y), y.shape) return x + y class _u_shortcut(nn.Module): def __init__(self, in_filters, nb_filters, subsample): super(_u_shortcut, self).__init__() self.process = False self.model = None if in_filters != nb_filters: self.process = True self.model = nn.Sequential( nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample, padding_mode='zeros'), nn.Upsample(scale_factor=2, mode='nearest') ) def forward(self, x, y): if self.process: return self.model(x) + y else: return x + y class basic_block(nn.Module): def __init__(self, in_filters, nb_filters, init_subsample=1): super(basic_block, self).__init__() self.conv1 = _bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample) self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3) self.shortcut = _shortcut(in_filters, nb_filters, subsample=init_subsample) def forward(self, x): x1 = self.conv1(x) x2 = self.residual(x1) return self.shortcut(x, x2) class _u_basic_block(nn.Module): def __init__(self, in_filters, nb_filters, init_subsample=1): super(_u_basic_block, self).__init__() self.conv1 = _u_bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample) self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3) self.shortcut = _u_shortcut(in_filters, nb_filters, subsample=init_subsample) def forward(self, x): y = self.residual(self.conv1(x)) return self.shortcut(x, y) class _residual_block(nn.Module): def __init__(self, in_filters, nb_filters, repetitions, is_first_layer=False): super(_residual_block, self).__init__() layers = [] for i in range(repetitions): init_subsample = 1 if i == repetitions - 1 and not is_first_layer: init_subsample = 2 if i == 0: l = basic_block(in_filters=in_filters, nb_filters=nb_filters, init_subsample=init_subsample) else: l = basic_block(in_filters=nb_filters, nb_filters=nb_filters, init_subsample=init_subsample) layers.append(l) self.model = nn.Sequential(*layers) def forward(self, x): return self.model(x) class _upsampling_residual_block(nn.Module): def __init__(self, in_filters, nb_filters, repetitions): super(_upsampling_residual_block, self).__init__() layers = [] for i in range(repetitions): l = None if i == 0: l = _u_basic_block(in_filters=in_filters, nb_filters=nb_filters)#(input) else: l = basic_block(in_filters=nb_filters, nb_filters=nb_filters)#(input) layers.append(l) self.model = nn.Sequential(*layers) def forward(self, x): return self.model(x) class res_skip(nn.Module): def __init__(self): super(res_skip, self).__init__() self.block0 = _residual_block(in_filters=1, nb_filters=24, repetitions=2, is_first_layer=True)#(input) self.block1 = _residual_block(in_filters=24, nb_filters=48, repetitions=3)#(block0) self.block2 = _residual_block(in_filters=48, nb_filters=96, repetitions=5)#(block1) self.block3 = _residual_block(in_filters=96, nb_filters=192, repetitions=7)#(block2) self.block4 = _residual_block(in_filters=192, nb_filters=384, repetitions=12)#(block3) self.block5 = _upsampling_residual_block(in_filters=384, nb_filters=192, repetitions=7)#(block4) self.res1 = _shortcut(in_filters=192, nb_filters=192)#(block3, block5, subsample=(1,1)) self.block6 = _upsampling_residual_block(in_filters=192, nb_filters=96, repetitions=5)#(res1) self.res2 = _shortcut(in_filters=96, nb_filters=96)#(block2, block6, subsample=(1,1)) self.block7 = _upsampling_residual_block(in_filters=96, nb_filters=48, repetitions=3)#(res2) self.res3 = _shortcut(in_filters=48, nb_filters=48)#(block1, block7, subsample=(1,1)) self.block8 = _upsampling_residual_block(in_filters=48, nb_filters=24, repetitions=2)#(res3) self.res4 = _shortcut(in_filters=24, nb_filters=24)#(block0,block8, subsample=(1,1)) self.block9 = _residual_block(in_filters=24, nb_filters=16, repetitions=2, is_first_layer=True)#(res4) self.conv15 = _bn_relu_conv(in_filters=16, nb_filters=1, fh=1, fw=1, subsample=1)#(block7) def forward(self, x): x0 = self.block0(x) x1 = self.block1(x0) x2 = self.block2(x1) x3 = self.block3(x2) x4 = self.block4(x3) x5 = self.block5(x4) res1 = self.res1(x3, x5) x6 = self.block6(res1) res2 = self.res2(x2, x6) x7 = self.block7(res2) res3 = self.res3(x1, x7) x8 = self.block8(res3) res4 = self.res4(x0, x8) x9 = self.block9(res4) y = self.conv15(x9) return y class MangaLineExtration: model_dir = os.path.join(models_path, "manga_line") def __init__(self): self.model = None self.device = DEVICE def load_model(self): remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/erika.pth" modelpath = os.path.join(self.model_dir, "erika.pth") if not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=self.model_dir) #norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) net = res_skip() ckpt = torch.load(modelpath) for key in list(ckpt.keys()): if 'module.' in key: ckpt[key.replace('module.', '')] = ckpt[key] del ckpt[key] net.load_state_dict(ckpt) net.eval() self.model = net.to(self.device) def unload_model(self): if self.model is not None: self.model.cpu() def __call__(self, input_image): if self.model is None: self.load_model() self.model.to(self.device) img = cv2.cvtColor(input_image, cv2.COLOR_RGB2GRAY) img = np.ascontiguousarray(img.copy()).copy() with torch.no_grad(): image_feed = torch.from_numpy(img).float().to(self.device) image_feed = rearrange(image_feed, 'h w -> 1 1 h w') line = self.model(image_feed) line = 255 - line.cpu().numpy()[0, 0] return line.clip(0, 255).astype(np.uint8)