from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler import gradio as gr import torch from PIL import Image import time import psutil import random # from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker start_time = time.time() current_steps = 15 pipe = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" if torch.cuda.is_available(): pipe = pipe.to("cuda") def error_str(error, title="Error"): return ( f"""#### {title} {error}""" if error else "" ) def inference( prompt, text_guidance_scale, image_guidance_scale, image, steps, neg_prompt="", width=256, height=256, seed=0, ): print(psutil.virtual_memory()) # print memory usage if seed == 0: seed = random.randint(0, 2147483647) generator = torch.Generator("cuda").manual_seed(seed) try: ratio = min(height / image.height, width / image.width) image = image.resize((int(image.width * ratio), int(image.height * ratio)), Image.LANCZOS) result = pipe( prompt, negative_prompt=neg_prompt, image=image, num_inference_steps=int(steps), image_guidance_scale=image_guidance_scale, guidance_scale=text_guidance_scale, generator=generator, ) # return replace_nsfw_images(result) return result.images, f"Done. Seed: {seed}" except Exception as e: return None, error_str(e) def replace_nsfw_images(results): for i in range(len(results.images)): if results.nsfw_content_detected[i]: results.images[i] = Image.open("nsfw.png") return results.images with gr.Blocks(css="style.css") as demo: gr.HTML( f"""
Demo for multiple fine-tuned Protogen Stable Diffusion models.
Running on {device}
You can also duplicate this space and upgrade to gpu by going to settings:
Models by @darkstorm2150 and others. ❤️
This space uses the DPM-Solver++ sampler by Cheng Lu, et al..
Space by: Darkstorm (Victor Espinoza)
Instagram