import json import torch import torch.nn as nn from torch.nn import functional as F device = 'cuda' if torch.cuda.is_available() else 'cpu' # one head of self-attention using scaled-dot product attention class Head(nn.Module): def __init__(self, n_embed, head_size, context_size, dropout=0.1): super().__init__() self.key = nn.Linear(n_embed, head_size, bias=False) self.query = nn.Linear(n_embed, head_size, bias=False) self.value = nn.Linear(n_embed, head_size, bias=False) self.register_buffer('tril', torch.tril(torch.ones(context_size, context_size))) self.dropout = nn.Dropout(dropout) def forward(self, x): B,T,C = x.shape k = self.key(x) q = self.query(x) v = self.value(x) tril = torch.tril(torch.ones(T, T, device=device)) wei = q @ k.transpose(-2, -1) * (C**-0.5) wei = wei.masked_fill(tril == 0, float('-inf')) wei = F.softmax(wei, dim=-1) wei = self.dropout(wei) out = wei @ v return out class MultiHeadAttention(nn.Module): def __init__(self, n_embed, num_heads, context_size, head_size, dropout): super().__init__() self.heads = nn.ModuleList([ Head(n_embed, head_size, context_size) for _ in range(num_heads) ]) self.projection = nn.Linear(n_embed, n_embed) self.dropout = nn.Dropout(dropout) def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) out = self.projection(out) return self.dropout(out) # simple feed forward layer class FeedForward(nn.Module): def __init__(self, n_embeds, dropout): super().__init__() self.net = nn.Sequential( nn.Linear(n_embeds, 4 * n_embeds), nn.ReLU(), # projection layer nn.Linear(4 * n_embeds, n_embeds), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) # Transformer block class Block(nn.Module): def __init__(self, n_embeds, n_head, context_size, dropout): super().__init__() head_size = n_embeds // n_head self.sa = MultiHeadAttention(n_embeds, n_head, context_size, head_size, dropout) self.ffwd = FeedForward(n_embeds, dropout) self.ln1 = nn.LayerNorm(n_embeds) self.ln2 = nn.LayerNorm(n_embeds) def forward(self, x): x = x + self.sa(self.ln1(x)) x = x + self.ffwd(self.ln2(x)) return x # simple bigram model class DecoderTransformer(nn.Module): def __init__(self, vocab_size, n_embed, context_size, n_layer, n_head, dropout): super().__init__() self.token_embedding_table = nn.Embedding(vocab_size, n_embed) self.position_embedding_table = nn.Embedding(context_size, n_embed) self.blocks = nn.Sequential( *[Block( n_embeds=n_embed, n_head=n_head, context_size=context_size, dropout=dropout ) for _ in range(n_layer)] ) self.ln_f = nn.LayerNorm(n_embed) self.lm_head = nn.Linear(n_embed, vocab_size) def forward(self, idx, targets=None): B, T = idx.shape # idx and targets of size (B,T) token_embeds = self.token_embedding_table(idx) # yields (B, T, C) pos_embeds = self.position_embedding_table(torch.arange(T, device=device)) x = token_embeds + pos_embeds x = self.ln_f(self.blocks(x)) logits = self.lm_head(x) if targets is None: return logits, None # reshape elements B, T, C = logits.shape logits = logits.view(B*T,C) targets = targets.view(B*T) # compute loss (CE) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens=50, context_size=None, temperature=1.0): if context_size is None: context_size = int(self.position_embedding_table.weight.shape[0]) print(context_size) for _ in range(max_new_tokens): idx_cond = idx[:, -context_size:] logits, loss = self(idx_cond) logits = logits[:,-1,:] / temperature probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat([idx, idx_next], dim=1) return idx class Tokenizer: def __init__(self, vocab): self.vocab = vocab self.stoi = {ch: idx for idx, ch in enumerate(vocab)} self.itos = {idx: ch for idx, ch in enumerate(vocab)} def encode(self, s): return [self.stoi[c] for c in s] def decode(self, i): return ''.join([self.itos[x] for x in i]) @classmethod def from_pretrained(cls, path): with open(path, 'r') as f: vocab = json.load(f) return cls(vocab) def save_pretrained(self, path): with open(path, 'w') as f: json.dump(self.vocab, f)