# import gradio as gr # from transformers import pipeline # # Load the pre-trained model # generator = pipeline("question-answering", model="EleutherAI/gpt-neo-2.7B") # # Define Gradio interface # def generate_response(prompt): # # Generate response based on the prompt # response = generator(prompt, max_length=50, do_sample=True, temperature=0.9) # return response[0]['generated_text'] # # Create Gradio interface # iface = gr.Interface( # fn=generate_response, # inputs="text", # outputs="text", # title="OpenAI Text Generation Model", # description="Enter a prompt and get a generated text response.", # ) # # Deploy the Gradio interface # iface.launch(share=True) import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "abacusai/Smaug-72B-v0.1" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate_answer(question): inputs = tokenizer.encode("Question: " + question, return_tensors="pt") outputs = model.generate(inputs, max_length=100, num_return_sequences=1, early_stopping=True, do_sample=True) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer iface = gr.Interface( fn=generate_answer, inputs="text", outputs="text", title="Open-Domain Question Answering", description="Enter your question to get an answer.", ) iface.launch(share=True) # Deploy the interface # from transformers import AutoModelForCausalLM, AutoTokenizer # model_name = "abacusai/Smaug-72B-v0.1" # model = AutoModelForCausalLM.from_pretrained(model_name) # tokenizer = AutoTokenizer.from_pretrained(model_name) # def generate_answer(question): # inputs = tokenizer.encode("Question: " + question, return_tensors="pt") # outputs = model.generate(inputs, max_length=100, num_return_sequences=1, early_stopping=True, do_sample=True) # answer = tokenizer.decode(outputs[0], skip_special_tokens=True) # return answer