import torch import os from gpt_dev import GPTLanguageModel, encode, decode, generate_text # Import necessary parts from gpt_dev.py # Set up device (GPU or CPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load your saved model (pre-trained model's state dict) block_size= 256 model_type = "gpt" n_embd = 384 n_head = 6 n_layer = 6 transformers_version = 4.44.2 vocab_size = 95 # Instantiate the model model = GPTLanguageModel(vocab_size, embedding_size, num_heads, num_layers) model.to(device) # Load the pre-trained weights if os.path.exists("gpt_language_model.pth"): checkpoint = torch.load("gpt_language_model.pth", map_location=device) model.load_state_dict(checkpoint) # Generate text based on a prompt start_prompt = "Once upon a time" generated_text = generate_text(model, start_prompt, max_length=100) print(generated_text) # Display the generated text