import gradio as gr import torch from transformers import GPT2Tokenizer # Assuming 'GPTLanguageModel' is already defined class GPTLanguageModel(torch.nn.Module): def forward(self, input_ids): pass def generate(self, input_ids, max_length=100): return torch.tensor([[input_ids]]) # This is a placeholder for generation class CustomTextGenerationPipeline: def __init__(self, model, tokenizer): self.model = model self.tokenizer = tokenizer def __call__(self, prompt, max_length=100): input_ids = self.tokenizer.encode(prompt, return_tensors='pt') generated_ids = self.model.generate(input_ids, max_length=max_length) return self.tokenizer.decode(generated_ids[0], skip_special_tokens=True) # Load model and tokenizer model = GPTLanguageModel() model.load_state_dict(torch.load("model.pth")) # Load the weights model.eval() tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Create the pipeline pipeline = CustomTextGenerationPipeline(model, tokenizer) # Define the Gradio response function def respond(message): return pipeline(message, max_length=100) # Create the Gradio interface demo = gr.Interface( fn=respond, inputs=gr.Textbox(lines=2, placeholder="Enter your prompt..."), outputs="text", ) if __name__ == "__main__": demo.launch()