import gradio as gr import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer # Define the model class class GPTLanguageModel(GPT2LMHeadModel): def __init__(self, config): super().__init__(config) # Load tokenizer and model tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Use your tokenizer path model = GPTLanguageModel.from_pretrained("gpt2") # Load the architecture model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu'))) # Load the weights model.eval() # Set to evaluation mode # Define a custom text generation pipeline class CustomTextGenerationPipeline: def __init__(self, model, tokenizer): self.model = model self.tokenizer = tokenizer def __call__(self, prompt, max_length=100): input_ids = self.tokenizer.encode(prompt, return_tensors='pt') generated_ids = self.model.generate(input_ids, max_length=max_length) return self.tokenizer.decode(generated_ids[0], skip_special_tokens=True) # Create the pipeline pipeline = CustomTextGenerationPipeline(model, tokenizer) # Define the Gradio response function def respond(message): return pipeline(message, max_length=100) # Create the Gradio interface demo = gr.Interface( fn=respond, inputs=gr.Textbox(lines=2, placeholder="Enter your prompt..."), outputs="text", ) if __name__ == "__main__": demo.launch()