# Import required libraries import pandas as pd import dash import dash_html_components as html import dash_core_components as dcc from dash.dependencies import Input, Output, State import plotly.graph_objects as go import plotly.express as px from dash import no_update # Read the airline data into pandas dataframe spacex_df = pd.read_csv("spacex_launch_dash.csv") max_payload = spacex_df['Payload Mass (kg)'].max() min_payload = spacex_df['Payload Mass (kg)'].min() # Create a dash application app = dash.Dash(__name__) # Create an app layout launch_sites = [] launch_sites.append({'label': 'All Sites', 'value': 'All Sites'}) for item in spacex_df["Launch Site"].value_counts().index: launch_sites.append({'label': item, 'value': item}) app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard', style={'textAlign': 'center', 'color': '#503D36', 'font-size': 40}), # TASK 1: Add a dropdown list to enable Launch Site selection # The default select value is for ALL sites dcc.Dropdown(id='site-dropdown', options = launch_sites, value = 'All Sites', placeholder = "Select a Launch Site here", searchable = True), html.Br(), # TASK 2: Add a pie chart to show the total successful launches count for all sites # If a specific launch site was selected, show the Success vs. Failed counts for the site html.Div(dcc.Graph(id='success-pie-chart')), html.Br(), html.P("Payload range (Kg):"), # TASK 3: Add a slider to select payload range dcc.RangeSlider(id='payload-slider', min = 0, max = 10000, step = 1000, value = [min_payload, max_payload], marks={ 2500: {'label': '2500 (Kg)'}, 5000: {'label': '5000 (Kg)'}, 7500: {'label': '7500 (Kg)'}}), # TASK 4: Add a scatter chart to show the correlation between payload and launch success html.Div(dcc.Graph(id='success-payload-scatter-chart')), ]) # TASK 2: # Add a callback function for `site-dropdown` as input, `success-pie-chart` as output @app.callback( Output(component_id='success-pie-chart', component_property='figure'), Input(component_id='site-dropdown', component_property='value') ) # Add computation to callback function and return graph def select(inputt): if inputt == 'All Sites': new_df = spacex_df.groupby(['Launch Site'])["class"].sum().to_frame() new_df = new_df.reset_index() fig = px.pie(new_df, values='class', names='Launch Site', title='Total Success Launches by Site') else: new_df = spacex_df[spacex_df["Launch Site"] == inputt]["class"].value_counts().to_frame() new_df["name"] = ["Failure", "Success"] fig = px.pie(new_df, values='class', names='name', title='Total Success Launches for ' + inputt) return fig # TASK 4: # Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output @app.callback( Output(component_id='success-payload-scatter-chart', component_property='figure'), Input(component_id='site-dropdown', component_property='value'), Input(component_id='payload-slider', component_property='value') ) def scatter(input1, input2): print(input1) print(input2) if input1 == 'All Sites': new_df = spacex_df new_df2 = new_df[new_df["Payload Mass (kg)"] >= input2[0]] new_df3 = new_df2[new_df["Payload Mass (kg)"] <= input2[1]] fig2 = px.scatter(new_df3, y="class", x="Payload Mass (kg)", color="Booster Version Category") else: new_df = spacex_df[spacex_df["Launch Site"] == input1] new_df2 = new_df[new_df["Payload Mass (kg)"] >= input2[0]] new_df3 = new_df2[new_df["Payload Mass (kg)"] <= input2[1]] #new_df2 = new_df[new_df["Payload Mass (kg)"] >= input2[0] & new_df["Payload Mass (kg)"] <= input2[1]] fig2 = px.scatter(new_df3, y="class", x="Payload Mass (kg)", color="Booster Version Category") return fig2 # Run the app if __name__ == '__main__': app.run_server()