import gradio as gr import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from huggingface_hub.keras_mixin import from_pretrained_keras from PIL import Image import utils _RESOLUTION = 224 def get_model() -> tf.keras.Model: """Initiates a tf.keras.Model from HF Hub.""" inputs = tf.keras.Input((_RESOLUTION, _RESOLUTION, 3)) hub_module = from_pretrained_keras("probing-vits/cait_xxs24_224_classification") logits, sa_atn_score_dict, ca_atn_score_dict = hub_module(inputs, training=False) return tf.keras.Model( inputs, [logits, sa_atn_score_dict, ca_atn_score_dict] ) _MODEL = get_model() def show_plot(image): """Function to be called when user hits submit on the UI.""" original_image, preprocessed_image = utils.preprocess_image( image, _RESOLUTION ) _, _, ca_atn_score_dict = _MODEL.predict(preprocessed_image) # Compute the saliency map and superimpose. saliency_attention = utils.get_cls_attention_map( preprocessed_image, ca_atn_score_dict, block_key="ca_ffn_block_0_att" ) fig = plt.figure() plt.imshow(original_image.astype("int32")) plt.imshow(saliency_attention.squeeze(), cmap="cividis", alpha=0.9) plt.axis("off") return fig title = "Generate Class Saliency Plots" article = "Class saliency maps as investigated in [Going deeper with Image Transformers](https://arxiv.org/abs/2103.17239) (Touvron et al.)." iface = gr.Interface( show_plot, inputs=gr.inputs.Image(type="pil", label="Input Image"), outputs=gr.outputs.Plot(type="auto"), title=title, article=article, allow_flagging="never", examples=[["./butterfly.jpg"]], ) iface.launch(debug=True)