from threading import Thread import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer model_id = "declare-lab/flan-alpaca-large" torch_device = "cuda" if torch.cuda.is_available() else "cpu" print("Running on device:", torch_device) print("CPU threads:", torch.get_num_threads()) if torch_device == "cuda": model = AutoModelForSeq2SeqLM.from_pretrained(model_id, load_in_8bit=True, device_map="auto") else: model = AutoModelForSeq2SeqLM.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) def run_generation(user_text, top_p, temperature, top_k, max_new_tokens): # Get the model and tokenizer, and tokenize the user text. model_inputs = tokenizer([user_text], return_tensors="pt").to(torch_device) # Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer # in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread. streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=float(temperature), top_k=top_k ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Pull the generated text from the streamer, and update the model output. model_output = "" for new_text in streamer: model_output += new_text yield model_output return model_output def reset_textbox(): return gr.update(value='') with gr.Blocks() as demo: duplicate_link = "https://huggingface.co/spaces/joaogante/transformers_streaming?duplicate=true" gr.Markdown( "# 🤗 Transformers 🔥Streaming🔥 on Gradio\n" "This demo showcases the use of the " "[streaming feature](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming) " "of 🤗 Transformers with Gradio to generate text in real-time. It uses " f"[{model_id}](https://huggingface.co/{model_id}) and the Spaces free compute tier.\n\n" f"Feel free to [duplicate this Space]({duplicate_link}) to try your own models or use this space as a " "template! 💛" ) with gr.Row(): with gr.Column(scale=4): user_text = gr.Textbox( placeholder="Write an email about an alpaca that likes flan", label="User input" ) model_output = gr.Textbox(label="Model output", lines=10, interactive=False) button_submit = gr.Button(value="Submit") with gr.Column(scale=1): max_new_tokens = gr.Slider( minimum=1, maximum=1000, value=250, step=1, interactive=True, label="Max New Tokens", ) top_p = gr.Slider( minimum=0.05, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)", ) top_k = gr.Slider( minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k", ) temperature = gr.Slider( minimum=0.1, maximum=5.0, value=0.8, step=0.1, interactive=True, label="Temperature", ) user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output) button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output) demo.queue(max_size=32).launch(enable_queue=True)