import os import asyncio from fastapi import FastAPI, HTTPException, Security, Depends, Query from fastapi.security import APIKeyHeader from pydantic import BaseModel, Field, create_model from typing import List, Optional from crawl4ai import AsyncWebCrawler from crawl4ai.extraction_strategy import JsonCssExtractionStrategy, LLMExtractionStrategy import json import logging import trafilatura # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) app = FastAPI() from file_conversion import router as file_conversion_router app.include_router(file_conversion_router, prefix="/api/v1") # API key configuration CHAT_AUTH_KEY = os.getenv("CHAT_AUTH_KEY") api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False) async def verify_api_key(api_key: str = Security(api_key_header)): if api_key != CHAT_AUTH_KEY: logger.warning("Invalid API key used") raise HTTPException(status_code=403, detail="Could not validate credentials") return api_key class CrawlerInput(BaseModel): url: str = Field(..., description="URL to crawl") columns: List[str] = Field(..., description="List of required columns") descriptions: List[str] = Field(..., description="Descriptions for each column") class CrawlerOutput(BaseModel): data: List[dict] async def simple_crawl(url: str): async with AsyncWebCrawler(verbose=True) as crawler: result = await crawler.arun(url=url, bypass_cache=True) print(len(result.markdown)) return result @app.post("/crawl", response_model=CrawlerOutput) async def crawl(input: CrawlerInput, api_key: str = Depends(verify_api_key)): if len(input.columns) != len(input.descriptions): raise HTTPException(status_code=400, detail="Number of columns must match number of descriptions") extraction_info = {col: desc for col, desc in zip(input.columns, input.descriptions)} dynamic_model = create_model( 'DynamicModel', **{col: (str, Field(..., description=desc)) for col, desc in extraction_info.items()} ) instruction = f"Extract the following information: {json.dumps(extraction_info)}" async with AsyncWebCrawler(verbose=True) as crawler: result = await crawler.arun( url=input.url, extraction_strategy=LLMExtractionStrategy( provider="openai/gpt-4o-mini", api_token=os.getenv('OPENAI_API_KEY'), schema=dynamic_model.schema(), extraction_type="schema", verbose=True, instruction=instruction ) ) extracted_data = json.loads(result.extracted_content) return CrawlerOutput(data=extracted_data) @app.get("/basic-crawl") async def test_url(api_key: str = Depends(verify_api_key), url: str = Query(..., description="URL to crawl")): """ A test endpoint that takes a URL as input and returns the result of crawling it. """ result = await simple_crawl(url=url) return {"markdown": result.markdown} @app.get("/basic-crawl-article") async def extract_article( url: str, record_id: Optional[str] = Query(None, description="Add an ID to the metadata."), no_fallback: Optional[bool] = Query(False, description="Skip the backup extraction with readability-lxml and justext."), favor_precision: Optional[bool] = Query(False, description="Prefer less text but correct extraction."), favor_recall: Optional[bool] = Query(False, description="When unsure, prefer more text."), include_comments: Optional[bool] = Query(True, description="Extract comments along with the main text."), output_format: Optional[str] = Query('txt', description="Define an output format: 'csv', 'json', 'markdown', 'txt', 'xml', 'xmltei'.", enum=["csv", "json", "markdown", "txt", "xml", "xmltei"]), target_language: Optional[str] = Query(None, description="Define a language to discard invalid documents (ISO 639-1 format)."), include_tables: Optional[bool] = Query(True, description="Take into account information within the HTML element."), include_images: Optional[bool] = Query(False, description="Take images into account (experimental)."), include_links: Optional[bool] = Query(False, description="Keep links along with their targets (experimental)."), deduplicate: Optional[bool] = Query(False, description="Remove duplicate segments and documents."), max_tree_size: Optional[int] = Query(None, description="Discard documents with too many elements.") ): response = await simple_crawl(url=url) filecontent = response.html extracted = trafilatura.extract( filecontent, url=url, record_id=record_id, no_fallback=no_fallback, favor_precision=favor_precision, favor_recall=favor_recall, include_comments=include_comments, output_format=output_format, target_language=target_language, include_tables=include_tables, include_images=include_images, include_links=include_links, deduplicate=deduplicate, max_tree_size=max_tree_size ) if extracted: return {"article": trafilatura.utils.sanitize(extracted)} else: return {"error": "Could not extract the article"} @app.get("/test") async def test(api_key: str = Depends(verify_api_key)): result = await simple_crawl("https://www.nbcnews.com/business") return {"markdown": result.markdown} from fastapi.middleware.cors import CORSMiddleware # CORS middleware setup app.add_middleware( CORSMiddleware, #allow_origins=["*"], allow_origins=[ "http://127.0.0.1:5501/", "http://localhost:5501", "http://localhost:3000", "https://www.elevaticsai.com", "https://www.elevatics.cloud", "https://www.elevatics.online", "https://www.elevatics.ai", "https://elevaticsai.com", "https://elevatics.cloud", "https://elevatics.online", "https://elevatics.ai", "https://web.elevatics.cloud", "https://pvanand-specialized-agents.hf.space", "https://pvanand-audio-chat.hf.space/" ], allow_credentials=True, allow_methods=["GET", "POST"], allow_headers=["*"], ) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)