import gradio as gr from langchain_core.messages import HumanMessage import src.passage_finder as pf import src.srf_bot as sb import prompts.system_prompts as sp import os # Initialize PassageFinder and Chatbot passage_finder = pf.PassageFinder() chatbot = sb.SRFChatbot() # Passage Finder functions def respond_passage_finder(message): config = passage_finder.get_configurable() results = passage_finder.graph.invoke({"messages": [HumanMessage(content=message)]}, config) documents = results.get('documents', []) output = [] for doc in documents: quotes = doc.metadata.get('matched_quotes', []) publication = doc.metadata.get('publication_name', 'Unknown Publication') chapter = doc.metadata.get('chapter_name', 'Unknown Chapter') full_passage = doc.metadata.get('highlighted_content', '') quote_text = "\n".join([f"• \"{q.quote}\"" for q in quotes]) output.append({ "quotes": quote_text, "reference": f"{publication}: {chapter}", "full_passage": full_passage }) return output def process_input_passage_finder(message): results = respond_passage_finder(message) html_output = "
" for result in results: html_output += f"""

{result['reference']}

{result['quotes'].replace("• ", "
• ")}
Show full passage
{result['full_passage']}
""" html_output += "
" return html_output # Chatbot functions def respond_chatbot(query, history): formatted_query = [HumanMessage(content=query)] # Invoke the graph with properly formatted input result = chatbot.graph.invoke({"messages": formatted_query}, chatbot.config) # Get the passages from the graph and append to history if documents exist state = chatbot.graph.get_state(config=chatbot.config).values documents = state.get("documents") passages = '' if documents and len(documents) > 0: for d in documents: passages += f'{d.metadata["publication_name"]} - {d.metadata["chapter_name"]}\n{d.page_content}\n\n' history.append((f'Passages: {query}', passages)) # Extract the assistant's response and append to history response = result["messages"][-1].content system_message_dropdown = state.get("system_message_dropdown") history.append((query, f"[{system_message_dropdown}]\n" + response)) return history # Define the CSS css = """ body { background-color: #f0f0f0; } .gradio-container { background-color: #ffffff; } .response-container { border: 1px solid #e0e0e0; border-radius: 8px; padding: 20px; background-color: #f9f9f9; } .result-item { margin-bottom: 20px; background-color: white; padding: 15px; border-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); } .reference { color: #2c3e50; margin-bottom: 10px; } .quotes { font-style: italic; margin-bottom: 10px; } .full-passage { margin-top: 10px; padding: 10px; background-color: #f0f0f0; border-radius: 5px; } details summary { cursor: pointer; color: #3498db; font-weight: bold; } details summary:hover { text-decoration: underline; } /* Chatbot specific styles */ .gr-button { background-color: #333333; color: white; font-size: 18px; padding: 10px; } .gr-textbox textarea { font-size: 18px; color: black; } .gr-dropdown { font-size: 18px; color: black; } .source-box { background-color: white; padding: 10px; border-radius: 8px; margin-top: 20px; color: black; border: 1px solid #D0D0D0; } /* Dark mode and responsive styles */ @media (prefers-color-scheme: dark) { .gradio-container { background-color: #1e1e1e; color: white; } h1, h2, p { color: white; } .gr-textbox textarea { background-color: #333333; color: white; } .gr-button { background-color: #555555; color: white; } .gr-dropdown { background-color: #333333; color: white; } .source-box { background-color: #333333; color: white; border: 1px solid #555555; } } @media (max-width: 600px) { .gr-row { flex-direction: column !important; } .gr-column { width: 100% !important; } } """ with gr.Blocks(css=css) as demo: gr.Markdown("# SRF Teachings App") with gr.Tabs(): with gr.TabItem("Passage Finder"): gr.Markdown("Ask questions about Self-Realization Fellowship teachings and receive responses with relevant quotes.") with gr.Row(): input_text_pf = gr.Textbox( placeholder="Ask about the meaning of life, spirituality, or any other topic...", label="Your Question" ) submit_btn_pf = gr.Button("Submit", variant="primary") output_area_pf = gr.HTML() gr.Markdown("### Sources") gr.Textbox(value="Journey to Self Realization, Second Coming of Christ, and Autobiography of a Yogi", label="Available Sources", interactive=False) submit_btn_pf.click(process_input_passage_finder, inputs=input_text_pf, outputs=output_area_pf) gr.Examples( examples=[ "What is the meaning of life?", "Importance of good posture", "How can I find inner peace?", "What does Paramahansa Yogananda say about meditation?", ], inputs=input_text_pf, ) with gr.TabItem("Custom Chatbots"): with gr.Row(): with gr.Column(scale=4): chatbot_output = gr.Chatbot(height=600) user_input_cb = gr.Textbox(placeholder="Type your question here...", label="Your Question", value="What is the meaning of life?") submit_button_cb = gr.Button("Submit") with gr.Column(scale=1): system_prompt_dropdown = gr.Dropdown( choices=list(sp.system_prompt_templates.keys()), label="Select Chatbot Instructions", value=list(sp.system_prompt_templates.keys())[0], ) system_prompt_display = gr.Textbox( value=sp.system_prompt_templates[list(sp.system_prompt_templates.keys())[0]], label="Current Chatbot Instructions", lines=5, interactive=False ) gr.Markdown("""
Available sources:
""") system_prompt_dropdown.change( fn=chatbot.reset_system_prompt, inputs=[system_prompt_dropdown], outputs=[system_prompt_display] ) submit_button_cb.click( fn=respond_chatbot, inputs=[user_input_cb, chatbot_output], outputs=[chatbot_output] ) # Access the secrets username = os.getenv("USERNAME") password = os.getenv("PASSWORD") # Launch the interface demo.launch(share=True, auth=(username, password), debug=True)