import gradio as gr from langchain_core.messages import HumanMessage import src.passage_finder as pf import src.srf_bot as sb import src.generic_bot as gb import prompts.system_prompts as sp import os # Initialize PassageFinder, SRFChatbot, and GenericChatbot passage_finder = pf.PassageFinder() chatbot = sb.SRFChatbot() generic_chatbot = gb.GenericChatbot() # Passage Finder functions def respond_passage_finder(message): config = passage_finder.get_configurable() results = passage_finder.graph.invoke({"messages": [HumanMessage(content=message)]}, config) documents = results.get('documents', []) output = [] for doc in documents: quotes = doc.metadata.get('matched_quotes', []) publication = doc.metadata.get('book_name', 'Unknown Publication') chapter = doc.metadata.get('full_title', 'Unknown Chapter') full_passage = doc.metadata.get('highlighted_content', '') quote_text = "\n".join([f"• \"{q.quote}\"" for q in quotes]) output.append({ "quotes": quote_text, "reference": f"{publication}: {chapter}", "full_passage": full_passage }) return output def process_input_passage_finder(message): results = respond_passage_finder(message) html_output = "
" for result in results: html_output += f"""

{result['reference']}

{result['quotes'].replace("• ", "
• ")}
Show full passage
{result['full_passage']}
""" html_output += "
" return html_output # Chatbot functions def respond_chatbot(query, history): formatted_query = [HumanMessage(content=query)] result = chatbot.graph.invoke({"messages": formatted_query}, chatbot.config) state = chatbot.graph.get_state(config=chatbot.config).values documents = state.get("documents") passages = '' if documents and len(documents) > 0: for d in documents: passages += f'{d.metadata["book_name"]} - {d.metadata["full_title"]}\n{d.page_content}\n\n' history.append((f'Passages: {query}', passages)) response = result["messages"][-1].content system_message_dropdown = state.get("system_message_dropdown") history.append((query, f"[{system_message_dropdown}]\n" + response)) return history # Generic Chatbot function def respond_genericchatbot(query, history): formatted_query = [HumanMessage(content=query)] result = generic_chatbot.graph.invoke({"messages": formatted_query}, generic_chatbot.config) state = generic_chatbot.graph.get_state(config=generic_chatbot.config).values documents = state.get("documents") passages = '' if documents and len(documents) > 0: for d in documents: passages += f'{d.metadata["book_name"]} - {d.metadata["full_title"]}\n{d.page_content}\n\n' history.append((f'Passages: {query}', passages)) response = result["messages"][-1].content history.append((query, response)) return history # Define the CSS css = """ body { background-color: #f0f0f0; } .gradio-container { background-color: #ffffff; } .response-container { border: 1px solid #e0e0e0; border-radius: 8px; padding: 20px; background-color: #f9f9f9; } .result-item { margin-bottom: 20px; background-color: white; padding: 15px; border-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); } .reference { color: #2c3e50; margin-bottom: 10px; } .quotes { font-style: italic; margin-bottom: 10px; } .full-passage { margin-top: 10px; padding: 10px; background-color: #f0f0f0; border-radius: 5px; } details summary { cursor: pointer; color: #3498db; font-weight: bold; } details summary:hover { text-decoration: underline; } /* Chatbot specific styles */ .gr-button { background-color: #333333; color: white; font-size: 18px; padding: 10px; } .gr-textbox textarea { font-size: 18px; color: black; } .gr-dropdown { font-size: 18px; color: black; } .source-box { background-color: white; padding: 10px; border-radius: 8px; margin-top: 20px; color: black; border: 1px solid #D0D0D0; } /* Dark mode and responsive styles */ @media (prefers-color-scheme: dark) { .gradio-container { background-color: #1e1e1e; color: white; } h1, h2, p { color: white; } .gr-textbox textarea { background-color: #333333; color: white; } .gr-button { background-color: #555555; color: white; } .gr-dropdown { background-color: #333333; color: white; } .source-box { background-color: #333333; color: white; border: 1px solid #555555; } } @media (max-width: 600px) { .gr-row { flex-direction: column !important; } .gr-column { width: 100% !important; } } """ with gr.Blocks(css=css) as demo: gr.Markdown("# SRF Teachings App") with gr.Tabs(): with gr.TabItem("Passage Finder"): gr.Markdown("Ask questions about Self-Realization Fellowship teachings and receive responses with relevant quotes.") with gr.Row(): input_text_pf = gr.Textbox( placeholder="Ask about the meaning of life, spirituality, or any other topic...", label="Your Question" ) submit_btn_pf = gr.Button("Submit", variant="primary") output_area_pf = gr.HTML() # gr.Markdown("### Sources") # gr.Textbox(value="Journey to Self Realization, Second Coming of Christ, and Autobiography of a Yogi", # label="Available Sources", interactive=False) submit_btn_pf.click(process_input_passage_finder, inputs=input_text_pf, outputs=output_area_pf) gr.Examples( examples=[ "What is the meaning of life?", "Importance of good posture", "How can I find inner peace?", "What does Paramahansa Yogananda say about meditation?", ], inputs=input_text_pf, ) with gr.TabItem("Custom Chatbots"): with gr.Row(): with gr.Column(scale=4): chatbot_output = gr.Chatbot(height=600) user_input_cb = gr.Textbox(placeholder="Type your question here...", label="Your Question") submit_button_cb = gr.Button("Submit") with gr.Column(scale=1): system_prompt_dropdown = gr.Dropdown( choices=list(sp.system_prompt_templates.keys()), label="Select Chatbot", value=list(sp.system_prompt_templates.keys())[0], ) chatbot_description = gr.Textbox( value=sp.chatbot_descriptions[list(sp.system_prompt_templates.keys())[0]], label="Chatbot Description", lines=3, interactive=False ) system_prompt_display = gr.Textbox( value=sp.system_prompt_templates[list(sp.system_prompt_templates.keys())[0]], label="Chatbot Instructions", lines=5, interactive=False ) # gr.Markdown(""" #
# Available sources: # #
# """) # system_prompt_dropdown.change( # fn=lambda x: (sp.chatbot_descriptions[x], sp.system_prompt_templates[x]), # inputs=[system_prompt_dropdown], # outputs=[chatbot_description, system_prompt_display] # ) def update_chatbot_info(selected_prompt): chatbot.reset_system_prompt(selected_prompt) return sp.chatbot_descriptions[selected_prompt], sp.system_prompt_templates[selected_prompt] system_prompt_dropdown.change( fn=update_chatbot_info, inputs=[system_prompt_dropdown], outputs=[chatbot_description, system_prompt_display] ) submit_button_cb.click( fn=respond_chatbot, inputs=[user_input_cb, chatbot_output], outputs=[chatbot_output] ) gr.Examples( examples=[ "importance of meditation", "How can I develop unconditional love?", "concept of karma", "What are some techniques for spiritual growth?", ], inputs=user_input_cb, ) with gr.TabItem("Generic Chatbot"): with gr.Row(): with gr.Column(scale=4): generic_chatbot_output = gr.Chatbot(height=600) user_input_gc = gr.Textbox(placeholder="Type your instructions and question here...", label="Your Instructions and Question") submit_button_gc = gr.Button("Submit") # ... (existing code for the column with markdown) def respond_and_clear(query, history): updated_history = respond_genericchatbot(query, history) return updated_history, "" # Return updated history and empty string for input submit_button_gc.click( fn=respond_and_clear, inputs=[user_input_gc, generic_chatbot_output], outputs=[generic_chatbot_output, user_input_gc] ) gr.Examples( examples=[ "Help me brainstorm ideas for a spiritual talk on the topic of cultivating divine love?", "How would I explain this to a beginneron the path: What are the main teachings of Self-Realization Fellowship?", "Explain the concept of Kriya Yoga for an advanced kriya yogi", "Can you provide quotes about the importance of meditation?", ], inputs=user_input_gc, ) # Access the secrets username = os.getenv("USERNAME") password = os.getenv("PASSWORD") # Launch the interface demo.launch(share=True, auth=(username, password), debug=True)