"""iBleu metric.""" import datasets import sacrebleu as scb from packaging import version import evaluate _CITATION = """\ @inproceedings{sun-zhou-2012-joint, title = "Joint Learning of a Dual {SMT} System for Paraphrase Generation", author = "Sun, Hong and Zhou, Ming", booktitle = "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", month = jul, year = "2012", address = "Jeju Island, Korea", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P12-2008", pages = "38--42", } """ _DESCRIPTION = """\ iBLEU measures the adequacy and dissimilarity of generated paraphrases. """ _KWARGS_DESCRIPTION = """ Produces iBLEU score from an input and a prediction against one or more references. Args: inputs (`list` of `str`): list of model inputs. Each input should be tokenized into a list of tokens. predictions (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens. references (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length). alpha (`float`): parameter for balancing between adequacy and dissimilarity; smaller α value indicates larger punishment on self-paraphrase. smooth_method (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are: - `'none'`: no smoothing - `'floor'`: increment zero counts - `'add-k'`: increment num/denom by k for n>1 - `'exp'`: exponential decay smooth_value (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`). tokenize (`str`): Tokenization method to use for iBLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are: - `'none'`: No tokenization. - `'zh'`: Chinese tokenization. - `'13a'`: mimics the `mteval-v13a` script from Moses. - `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses - `'char'`: Language-agnostic character-level tokenization. - `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3). lowercase (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`. force (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`. use_effective_order (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`. Returns: 'score': iBLEU score, Examples: >>> inputs = ["greetings general kenobi", "foo foo bar bar"] >>> predictions = ["hello there general kenobi", "foo bar foobar"] >>> references = [["hello there general kenobi", "hello there !"], ["foo bar foobar", "foo bar foobar"]] >>> ibleu = evaluate.load("rahular/ibleu") >>> results = ibleu.compute(inputs=inputs, predictions=predictions, references=references) >>> print(results) {'score': 60.41585343630594} """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class ibleu(evaluate.Metric): def _info(self): if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=[ datasets.Features( { "inputs": datasets.Value("string", id="sequence"), "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence( datasets.Value("string", id="sequence"), id="references" ), } ), datasets.Features( { "inputs": datasets.Value("string", id="sequence"), "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), ], reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html" ], ) def _compute( self, inputs, predictions, references, alpha=0.7, smooth_method="exp", smooth_value=None, force=False, lowercase=False, tokenize=None, use_effective_order=False, ): # if only one reference is provided make sure we still use list of lists if isinstance(references[0], str): references = [[ref] for ref in references] # we need to do the same for inputs if isinstance(inputs[0], str): inputs = [[inp] for inp in inputs] else: raise ValueError("There can be only one input string") references_per_prediction = len(references[0]) if any(len(refs) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] tgt_bleu = scb.corpus_bleu( predictions, transformed_references, smooth_method=smooth_method, smooth_value=smooth_value, force=force, lowercase=lowercase, use_effective_order=use_effective_order, **(dict(tokenize=tokenize) if tokenize else {}), ).score self_bleu = scb.corpus_bleu( predictions, inputs, smooth_method=smooth_method, smooth_value=smooth_value, force=force, lowercase=lowercase, use_effective_order=use_effective_order, **(dict(tokenize=tokenize) if tokenize else {}), ).score output_dict = { "score": alpha * tgt_bleu - (1 - alpha) * self_bleu } return output_dict