from pandasai.llm import GoogleGemini import streamlit as st import os import pandas as pd from pandasai import SmartDataframe from pandasai.responses.response_parser import ResponseParser from st_on_hover_tabs import on_hover_tabs from ydata_profiling import ProfileReport import google.generativeai as genai import json class StreamLitResponse(ResponseParser): def __init__(self,context) -> None: super().__init__(context) def format_dataframe(self,result): st.dataframe(result['value']) return def format_plot(self,result): st.image(result['value']) return def format_other(self, result): st.write(result['value']) return gemini_api_key = os.environ['Gemini'] genai.configure(api_key=gemini_api_key) generation_config = { "temperature": 0.2, "top_p": 0.95, "max_output_tokens": 5000, } model = genai.GenerativeModel( model_name="gemini-1.5-flash", generation_config=generation_config, ) def calculate_kpis(df): """ Calculates key performance indicators from a given transaction dataset. Args: df: Pandas DataFrame containing transaction data. Returns: A JSON object containing the calculated KPIs. """ # Calculate Total Revenue total_revenue = df['Price'] * df['Quantity'].sum() # Calculate Top Five Products by Revenue if df['Description'].nunique() > 5: top_five_products = df.groupby('Description')['Price'].sum().nlargest(5).index.tolist() else: top_five_product = "there are less than 5 products in this dataset" if df['Branch_Name'].nunique() > 1: best_branch = df.groupby('Branch_Name')['Price'].sum().nlargest(1).index.tolist() else: best_branch = "there is only one branch in this dataset" # Calculate Average Order Value (AOV) aov = df.groupby('Receipt No_')['Price'].sum().mean() # Calculate Customer Purchase Frequency (Requires more data for accurate calculation) # Assuming 'Member Card No_' is a unique identifier for customers customer_purchase_frequency = df.groupby('Customer_Name')['Receipt No_'].nunique().mean() # Calculate Estimated Customer Lifetime Value (CLTV) (Requires more data for accurate calculation) # Assuming a simple CLTV model based on AOV and purchase frequency estimated_cltv = aov * customer_purchase_frequency * 12 # Assuming annual value # Create JSON output kpis = { "total_revenue": total_revenue, "top_five_products": top_five_products, "average_order_value": aov, "customer_purchase_frequency": customer_purchase_frequency, "estimated_cltv": estimated_cltv, "best_performing_branch": best_branch } return kpis def get_pandas_profile(df): profile = ProfileReport(df, title="Profiling Report") json_profile = profile.to_json() dict_p = json.loads(json_profile) keys_to_keep = ['analysis', 'table', 'correlations', 'alerts', 'sample'] # Assuming your dictionary is named 'my_dict' filtered_dict = {key: dict_p[key] for key in keys_to_keep} return filtered_dict def generateResponse(dataFrame,prompt): llm = GoogleGemini(api_key=gemini_api_key) pandas_agent = SmartDataframe(dataFrame,config={"llm":llm, "response_parser":StreamLitResponse}) answer = pandas_agent.chat(prompt) return answer st.write("# Brave Retail Insights") st.markdown('', unsafe_allow_html=True) st.write("##### Engage in insightful conversations with your data through powerful visualizations") with st.sidebar: st.title("Brave Retail Insights") tabs = on_hover_tabs(tabName=['Chat', 'Reports'], iconName=['chat', 'dashboard'], default_choice=0) uploaded_file = "bon_marche.csv" #uploaded_file = "healthcare_dataset.csv" if tabs =='Chat': st.header("Brave Retail Chat") st.write("Get visualizations and analysis from our Gemini powered agent") # Read the CSV file df = pd.read_csv(uploaded_file) # Display the data with st.expander("Preview"): st.write(df.head()) # Plot the data user_input = st.text_input("Type your message here",placeholder="Ask me about your data") if user_input: answer = generateResponse(dataFrame=df,prompt=user_input) st.write(answer) elif tabs == 'Reports': df = pd.read_csv(uploaded_file) st.header("Reports") prompt = """ You are an expert business analyst. Analyze the following data and generate a comprehensive and insightful business report, including appropriate key perfomance indicators and reccomendations. data: """ + str(calculate_kpis(df)) + str(get_pandas_profile(df)) response = model.generate_content(prompt) report = response.text st.markdown(report)