from huggingface_hub import from_pretrained_fastai LABELS = Path('class_names.txt').read_text().splitlines() def predict(im): learner = from_pretrained_fastai("rajeshradhakrishnan/ml-news-classify-fastai") probabilities = learner.predict(sentences) values, indices = torch.topk(probabilities, 5) return {LABELS[i]: v.item() for i, v in zip(indices, values)} interface = gr.Interface( predict, inputs="newsheadlines", outputs='label', theme="huggingface", title="Sketch Recognition", description="Malayalam News Classifier? Input a few malayalam news headlines and verify whether the model categorized it apporpirately!", article = "
Malayalam News Classifier | Demo Model
", live=True) interface.launch(debug=True)