#for learning import os #import openai import gradio as gr from llama_index.readers.file import PDFReader ### added to remove openapi device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name = "baffo32/decapoda-research-llama-7B-hf" model = torch.hub.load("HuggingFace", "transformers", model_name).to(device) ### added to remove openapi #openai.api_key = os.environ.get('O_APIKey') Data_Read = os.environ.get('Data_Reader') ChurnData = os.environ.get('Churn_Data') ChurnData2 = os.environ.get('Churn_Data2') #read data orig #from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, SummaryIndex, download_loader #DataReader = download_loader(Data_Read) #loader = DataReader() #read data from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, SummaryIndex loader = PDFReader() ### 1st file documents = loader.load_data(file=ChurnData) ### 1st file ### 2nd file documents2 = loader.load_data(file=ChurnData2) documents = documents + documents2 ### 2nd file index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() def reply(message, history): answer = str(query_engine.query(message)) return answer Conversing = gr.ChatInterface(reply, chatbot=gr.Chatbot(height="70vh",label="Conversation"), retry_btn=None,theme=gr.themes.Monochrome(), title = 'E-Commerce BT/AN/CA/DH/VE/GA CMS Q&A', undo_btn = None, clear_btn = None, css='footer {visibility: hidden}').launch()