# 0- libraries
import transformers
import gradio as gr
from youtube_transcript_api import YouTubeTranscriptApi
from huggingface_hub import InferenceClient
from pytube import YouTube
import pytube
import torch
# 1 - abstractive_summary
# 1.1 - initialize
import os
save_dir = os.path.join(os.getcwd(), "docs")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
transcription_model_id = "openai/whisper-large"
llm_model_id = "tiiuae/falcon-7b-instruct"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# 1.2 - transcription
def get_yt_transcript(url):
text = ""
vid_id = pytube.extract.video_id(url)
temp = YouTubeTranscriptApi.get_transcript(vid_id)
for t in temp:
text += t["text"] + " "
return text
# 1.2.1 - locally_transcribe
def transcribe_yt_vid(url):
# download YouTube video's audio
yt = YouTube(str(url))
audio = yt.streams.filter(only_audio=True).first()
out_file = audio.download(filename="audio.mp3", output_path=save_dir)
# defining an automatic-speech-recognition pipeline
asr = transformers.pipeline(
"automatic-speech-recognition",
model=transcription_model_id,
device_map="auto",
)
# setting model config parameters
asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids(
language="en", task="transcribe"
)
# invoking the Whisper model
temp = asr(out_file, chunk_length_s=20)
text = temp["text"]
# we can do this at the end to release GPU memory
del asr
torch.cuda.empty_cache()
return text
# 1.2.1 - api_transcribe
def transcribe_yt_vid_api(url, api_token):
# download YouTube video's audio
yt = YouTube(str(url))
audio = yt.streams.filter(only_audio=True).first()
out_file = audio.download(filename="audio.wav", output_path=save_dir)
# Initialize client for the Whisper model
client = InferenceClient(model=transcription_model_id, token=api_token)
import librosa
import soundfile as sf
text = ""
t = 25 # audio chunk length in seconds
x, sr = librosa.load(out_file, sr=None)
# This gives x as audio file in numpy array and sr as original sampling rate
# The audio needs to be split in 20 second chunks since the API call truncates the response
for _, i in enumerate(range(0, (len(x) // (t * sr)) + 1)):
y = x[t * sr * i : t * sr * (i + 1)]
split_path = os.path.join(save_dir, "audio_split.wav")
sf.write(split_path, y, sr)
text += client.automatic_speech_recognition(split_path)
return text
# 1.2.3 - transcribe locally or api
def transcribe_youtube_video(url, force_transcribe=False, use_api=False, api_token=None):
yt = YouTube(str(url))
text = ""
# get the transcript from YouTube if available
try:
text = get_yt_transcript(url)
except:
pass
# transcribes the video if YouTube did not provide a transcription
# or if you want to force_transcribe anyway
if text == "" or force_transcribe:
if use_api:
text = transcribe_yt_vid_api(url, api_token=api_token)
transcript_source = "The transcript was generated using {} via the Hugging Face Hub API.".format(
transcription_model_id
)
else:
text = transcribe_yt_vid(url)
transcript_source = (
"The transcript was generated using {} hosted locally.".format(
transcription_model_id
)
)
else:
transcript_source = "The transcript was downloaded from YouTube."
return yt.title, text, transcript_source
# 1.3 - turn to paragraph or points
def turn_to_paragraph(text):
# REMOVE HTML TAGS
from bs4 import BeautifulSoup
# Parse the HTML text
soup = BeautifulSoup(text, "html.parser")
# Get the text without HTML tags
text = soup.get_text() # print(text_without_tags)
# Remove leading and trailing whitespaces
text = text.strip()
# Check if the string ends with "User" and remove it
if text.endswith("User"):
text = text[: -len("User")]
# Replace dashes and extra whitespaces with spaces
text = (
text.replace(" -", "")
.replace(" ", "")
.replace("\n", " ")
.replace("- ", "")
.replace("`", "")
)
# text = text.replace(" ", "\n\n") # to keep second paragraph if it exists # sometime it's good to turn this on. but let's keep it off
text = text.replace(" ", " ") # off this if ^ is on
return text
# 1.3.1
def turn_to_points(text): # input must be from `turn_to_paragraph()`
# text = text.replace(". ", ".\n-") # to keep second paragraph if it exists
text_with_dashes = ".\n".join("- " + line.strip() for line in text.split(". "))
text_with_dashes = text_with_dashes.replace("\n\n", "\n\n- ") # for first sentence of new paragraph
return text_with_dashes
# 1.3.2 - combined funtions above for paragraph_or_points
def paragraph_or_points(text, pa_or_po):
if pa_or_po == "Points":
return turn_to_points(turn_to_paragraph(text))
else: # default is Paragraph
return turn_to_paragraph(text)
# 1.4 - summarization
def summarize_text(title, text, temperature, words, use_api=False, api_token=None, do_sample=False, length="Short", pa_or_po="Paragraph",):
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains import ReduceDocumentsChain, MapReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
import torch
import transformers
from transformers import BitsAndBytesConfig
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain import HuggingFacePipeline
import torch
model_kwargs1 = {
"temperature": temperature,
"do_sample": do_sample,
"min_new_tokens": 200 - 25,
"max_new_tokens": 200 + 25,
"repetition_penalty": 20.0,
}
model_kwargs2 = {
"temperature": temperature,
"do_sample": do_sample,
"min_new_tokens": words,
"max_new_tokens": words + 100,
"repetition_penalty": 20.0,
}
if not do_sample:
del model_kwargs1["temperature"]
del model_kwargs2["temperature"]
if use_api:
from langchain import HuggingFaceHub
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
llm = HuggingFaceHub(
repo_id=llm_model_id,
model_kwargs=model_kwargs1,
huggingfacehub_api_token=api_token,
)
llm2 = HuggingFaceHub(
repo_id=llm_model_id,
model_kwargs=model_kwargs2,
huggingfacehub_api_token=api_token,
)
summary_source = (
"The summary was generated using {} via Hugging Face API.".format(
llm_model_id
)
)
else:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
model = AutoModelForCausalLM.from_pretrained(
llm_model_id,
# quantization_config=quantization_config
)
model.to_bettertransformer()
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
pad_token_id=tokenizer.eos_token_id,
**model_kwargs1,
)
pipeline2 = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
pad_token_id=tokenizer.eos_token_id,
**model_kwargs2,
)
llm = HuggingFacePipeline(pipeline=pipeline)
llm2 = HuggingFacePipeline(pipeline=pipeline2)
summary_source = "The summary was generated using {} hosted locally.".format(
llm_model_id
)
# Map
map_template = """
Summarize the following video in a clear way:\n
----------------------- \n
TITLE: `{title}`\n
TEXT:\n
`{docs}`\n
----------------------- \n
SUMMARY:\n
"""
map_prompt = PromptTemplate(
template=map_template, input_variables=["title", "docs"]
)
map_chain = LLMChain(llm=llm, prompt=map_prompt)
# Reduce - Collapse
collapse_template = """
TITLE: `{title}`\n
TEXT:\n
`{doc_summaries}`\n
----------------------- \n
Turn the text of a video above into a long essay:\n
"""
collapse_prompt = PromptTemplate(
template=collapse_template, input_variables=["title", "doc_summaries"]
)
collapse_chain = LLMChain(llm=llm, prompt=collapse_prompt) # LLM 1 <-- LLM
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
collapse_documents_chain = StuffDocumentsChain(
llm_chain=collapse_chain, document_variable_name="doc_summaries"
)
# Final Reduce - Combine
combine_template_short = """\n
TITLE: `{title}`\n
TEXT:\n
`{doc_summaries}`\n
----------------------- \n
Turn the text of a video above into a 3-sentence summary:\n
"""
combine_template_medium = """\n
TITLE: `{title}`\n
TEXT:\n
`{doc_summaries}`\n
----------------------- \n
Turn the text of a video above into a long summary:\n
"""
combine_template_long = """\n
TITLE: `{title}`\n
TEXT:\n
`{doc_summaries}`\n
----------------------- \n
Turn the text of a video above into a long essay:\n
"""
# Turn the text of a video above into a 3-sentence summary:\n
# Turn the text of a video above into a long summary:\n
# Turn the text of a video above into a long essay:\n
if length == "Medium":
combine_prompt = PromptTemplate(
template=combine_template_medium,
input_variables=["title", "doc_summaries", "words"],
)
elif length == "Long":
combine_prompt = PromptTemplate(
template=combine_template_long,
input_variables=["title", "doc_summaries", "words"],
)
else: # default is short
combine_prompt = PromptTemplate(
template=combine_template_short,
input_variables=["title", "doc_summaries", "words"],
)
combine_chain = LLMChain(llm=llm2, prompt=combine_prompt) # LLM 2 <-- LLM2
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
combine_documents_chain = StuffDocumentsChain(
llm_chain=combine_chain, document_variable_name="doc_summaries"
)
# Combines and iteratively reduces the mapped documents
reduce_documents_chain = ReduceDocumentsChain(
# This is final chain that is called.
combine_documents_chain=combine_documents_chain,
# If documents exceed context for `StuffDocumentsChain`
collapse_documents_chain=collapse_documents_chain,
# The maximum number of tokens to group documents into.
token_max=800,
)
# Combining documents by mapping a chain over them, then combining results
map_reduce_chain = MapReduceDocumentsChain(
# Map chain
llm_chain=map_chain,
# Reduce chain
reduce_documents_chain=reduce_documents_chain,
# The variable name in the llm_chain to put the documents in
document_variable_name="docs",
# Return the results of the map steps in the output
return_intermediate_steps=False,
)
from langchain.document_loaders import TextLoader
from langchain.text_splitter import TokenTextSplitter
with open(save_dir + "/transcript.txt", "w") as f:
f.write(text)
loader = TextLoader(save_dir + "/transcript.txt")
doc = loader.load()
text_splitter = TokenTextSplitter(chunk_size=800, chunk_overlap=100)
docs = text_splitter.split_documents(doc)
summary = map_reduce_chain.run(
{"input_documents": docs, "title": title, "words": words}
)
try:
del (map_reduce_chain, reduce_documents_chain,
combine_chain, collapse_documents_chain,
map_chain, collapse_chain,
llm, llm2,
pipeline, pipeline2,
model, tokenizer)
except:
pass
torch.cuda.empty_cache()
summary = paragraph_or_points(summary, pa_or_po)
return summary, summary_source
# 1.5 - complete function [DELETED]
# 2 - extractive/low-abstractive summary for Key Sentence Highlight
# 2.1 - chunking + hosted inference, summary [DELETED]
# 2.2 - add spaces between punctuations
import re
def add_space_before_punctuation(text):
# Define a regular expression pattern to match punctuation
punctuation_pattern = r"([.,!?;:])"
# Use re.sub to add a space before each punctuation
modified_text = re.sub(punctuation_pattern, r" \1", text)
return modified_text
# 2.3 - highlight same words (yellow)
from difflib import ndiff
def highlight_text_with_diff(text1, text2):
diff = list(ndiff(text1.split(), text2.split()))
highlighted_diff = []
for item in diff:
if item.startswith(" "):
highlighted_diff.append(
''
+ item
+ " "
) # Unchanged words
elif item.startswith("+"):
highlighted_diff.append(item[2:] + " ")
return "".join(highlighted_diff) # output in string HTML format
# 2.4 - combined - `highlight_key_sentences`
# extractive/low-abstractive summarizer with facebook/bart-large-cnn
# highlight feature
def highlight_key_sentences(original_text, api_key):
import requests
API_TOKEN = api_key
headers = {"Authorization": f"Bearer {API_TOKEN}"}
API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def chunk_text(text, chunk_size=1024):
# Split the text into chunks
chunks = [text[i : i + chunk_size] for i in range(0, len(text), chunk_size)]
return chunks
def summarize_long_text(long_text):
# Split the long text into chunks
text_chunks = chunk_text(long_text)
# Summarize each chunk
summaries = []
for chunk in text_chunks:
data = query(
{
"inputs": f"{chunk}",
"parameters": {"do_sample": False},
}
) # what if do_sample=True?
summaries.append(data[0]["summary_text"])
# Combine the summaries of all chunks
full_summary = " ".join(summaries)
return full_summary
summarized_text = summarize_long_text(original_text)
original_text = add_space_before_punctuation(original_text)
summarized_text = add_space_before_punctuation(summarized_text)
return highlight_text_with_diff(summarized_text, original_text) # output in string HTML format
# 3 - extract_keywords
# 3.1 - initialize & load pipeline
from transformers import (
TokenClassificationPipeline,
AutoModelForTokenClassification,
AutoTokenizer,
)
from transformers.pipelines import AggregationStrategy
import numpy as np
# Define keyphrase extraction pipeline
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
def __init__(self, model, *args, **kwargs):
super().__init__(
model=AutoModelForTokenClassification.from_pretrained(model),
tokenizer=AutoTokenizer.from_pretrained(model),
*args,
**kwargs,
)
def postprocess(self, all_outputs):
results = super().postprocess(
all_outputs=all_outputs,
aggregation_strategy=AggregationStrategy.SIMPLE,
)
return np.unique([result.get("word").strip() for result in results])
# Load pipeline
model_name = "ml6team/keyphrase-extraction-kbir-inspec"
extractor = KeyphraseExtractionPipeline(model=model_name)
# 3.2 - re-arrange keywords order
import re
def rearrange_keywords(text, keywords): # text:str, keywords:List
# Find the positions of each keyword in the text
keyword_positions = {word: text.lower().index(word.lower()) for word in keywords}
# Sort the keywords based on their positions in the text
sorted_keywords = sorted(keywords, key=lambda x: keyword_positions[x])
return sorted_keywords
# 3.3 - `keywords_extractor` function
def keywords_extractor_list(summary): # List : Flashcards
keyphrases = extractor(summary) # extractor() from above | text.replace("\n", " ")
list_keyphrases = keyphrases.tolist()
# rearrange first
list_keyphrases = rearrange_keywords(summary, list_keyphrases)
return list_keyphrases # returns List
def keywords_extractor_str(summary): # str : Keywords Highlight & Fill in the Blank
keyphrases = extractor(summary) # extractor() from above | text.replace("\n", " ")
list_keyphrases = keyphrases.tolist()
# rearrange first
list_keyphrases = rearrange_keywords(summary, list_keyphrases)
# join List elements to one string
all_keyphrases = " ".join(list_keyphrases)
return all_keyphrases # returns one string
# 3.4 - keywords highlight
# 3.4.1 - highlight same words (green)
def highlight_green(text1, text2): # keywords(str), text
diff = list(ndiff(text1.split(), text2.split()))
highlighted_diff = []
for item in diff:
if item.startswith(" "):
highlighted_diff.append(
''
+ item
+ " "
) # Unchanged words
elif item.startswith("+"):
highlighted_diff.append(item[2:] + " ")
return "".join(highlighted_diff) # output in string HTML format
# 3.4.2 - combined - keywords highlight
def keywords_highlight(text):
keywords = keywords_extractor_str(text) # keywords; one string
text = add_space_before_punctuation(text)
return highlight_green(keywords, text) # output in string HTML format
# 3.5 - flashcards
# 3.5.1 - pair_keywords_sentences
def pair_keywords_sentences(text, search_words): # text:str, search_words:List
result_html = ""
# Split the text into sentences
sentences = re.split(r"(?" + word + " \n"
for sentence in sentences:
result_html += " " + sentence + "
\n
Please generate a summary first.
\nYouTube transcription
") force_transcribe_with_app = gr.Checkbox( label="Always transcribe with app", info="The app first checks if caption on YouTube is available. If ticked, the app will transcribe the video for you but slower.", ) with gr.Group(): gr.HTML("Summarization
") gr.Radio(["High Abstractive", "Low Abstractive", "Extractive"], label="Type of summarization", value="High Abstractive", interactive=False) gr.Dropdown( [ "tiiuae/falcon-7b-instruct", "GPT2 (work in progress)", "OpenChat 3.5 (work in progress)", ], label="Model", value="tiiuae/falcon-7b-instruct", interactive=False, ) temperature = gr.Slider(0.10, 0.30, step=0.05, label="Temperature", value=0.15, info="Temperature is limited to 0.1 ~ 0.3 window, as it is shown to produce best result.", interactive=True, ) do_sample = gr.Checkbox(label="do_sample", value=True, info="If ticked, do_sample produces more creative and diverse text, otherwise the app will use greedy decoding that generate more consistent and predictable summary.", ) with gr.Group(): gr.HTML("Highlight
") check_key_sen = gr.Checkbox(label="Highlight key sentences", info="In original text", value=True, interactive=False) gr.Checkbox(label="Highlight keywords", info="In summary", value=True, interactive=False) gr.Checkbox(label="Turn text to paragraphs", interactive=False) with gr.Group(): gr.HTML("Quiz mode
") gr.Checkbox(label="Fill in the blanks", value=True, interactive=False) gr.Checkbox(label="Flashcards", value=True, interactive=False) gr.Checkbox(label="Re-write summary", interactive=False) # info="Only for 'Short'" with gr.Row(): clrButtonSt2 = gr.ClearButton(interactive=True) subButtonSt2 = gr.Button(value="Set Current as Default", interactive=False) subButtonSt2 = gr.Button(value="Show Default", interactive=False) with gr.Column(): with gr.Tab("Summary"): # Output title = gr.Textbox(show_label=False, placeholder="Title") summary = gr.Textbox(lines=11, show_copy_button=True, label="", placeholder="Summarized output ...") with gr.Tab("Key sentences", render=True): key_sentences = gr.HTML(emptyTabHTML) showButtonKeySen = gr.Button(value="Generate") with gr.Tab("Keywords", render=True): keywords = gr.HTML(emptyTabHTML) showButtonKeyWor = gr.Button(value="Generate") with gr.Tab("Fill in the blank", render=True): blanks = gr.HTML(emptyTabHTML) showButtonFilBla = gr.Button(value="Generate") with gr.Tab("Flashcards", render=True): flashCrd = gr.HTML(emptyTabHTML) showButtonFlash = gr.Button(value="Generate") gr.Markdown(" The app is still a work in progress. The output may be odd and some features are still disabled. [Learn more]().") with gr.Group(): gr.HTML("🤗 Hugging Face Access Token [more]
") hf_access_token = gr.Textbox( show_label=False, placeholder="example: hf_******************************", type="password", info="The app does not store the token.", ) with gr.Accordion("Info", open=False, visible=False): transcript_source = gr.Textbox(show_label=False, placeholder="transcript_source") summary_source = gr.Textbox(show_label=False, placeholder="summary_source") words = gr.Slider(minimum=100, maximum=500, value=250, label="Length of the summary") # words: what should be the constant value? use_api = gr.Checkbox(label="use_api", value=True) subButton.click( fn=transcribe_youtube_video, inputs=[yt_link, force_transcribe_with_app, use_api, hf_access_token], outputs=[title, yt_transcript, transcript_source], queue=True, ).then( fn=summarize_text, inputs=[title, yt_transcript, temperature, words, use_api, hf_access_token, do_sample, length, pa_or_po], outputs=[summary, summary_source], api_name="summarize_text", queue=True, ) subButton.click(fn=empty_tab, outputs=[key_sentences]) subButton.click(fn=empty_tab, outputs=[keywords]) subButton.click(fn=empty_tab, outputs=[flashCrd]) subButton.click(fn=empty_tab, outputs=[blanks]) showButtonKeySen.click( fn=highlight_key_sentences, inputs=[yt_transcript, hf_access_token], outputs=[key_sentences], queue=True, ) # Keywords showButtonKeyWor.click(fn=keywords_highlight, inputs=[summary], outputs=[keywords], queue=True) # Flashcards showButtonFlash.click(fn=flashcards, inputs=[summary], outputs=[flashCrd], queue=True) # Fill in the blanks showButtonFilBla.click(fn=fill_in_blanks, inputs=[summary], outputs=[blanks], queue=True) if __name__ == "__main__": demo.launch(show_api=False) # demo.launch(show_api=False, debug=True) # demo.launch(show_api=False, share=True)