import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import difflib import re commit_message_per_brush = { "Annotate Type": "annotate type to the variables.", "Reformat" : "Reformat the code using pep8", "Add Docstrings" : "Add docstrings to all the functions", "Add Comments" : "Add inline comments to all the functions", } def load_model_and_tokenizer(model_name:str="CarperAI/diff-codegen-2B-v2"): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return tokenizer, model def make_prompt(code:str,task): filename = "input.py" prompt = f"main.py{code}{commit_message_per_brush[task]}." return prompt def generate_diff(code:str): input_ids = tokenizer.encode(code, return_tensors='pt') outputs = model.generate(input_ids, max_length=64,temperature=0.8,top_p=0.85) return tokenizer.decode(outputs[0], skip_special_tokens=True) def postprocess_output(generated_output:str): pass st.title("Code Brush") st.write("A tool to brush up your code") tokenizer,model = load_model_and_tokenizer() with st.form("my_form"): text = st.text_area("Enter your code here", height=150, value="def greet(input_name):\n return f'Hello, {input_name}'" ) brush_type = st.selectbox("Brush Type", ["Annotate Type", "Reformat", "Add Docstrings", "Add Comments"]) submit_button = st.form_submit_button("Submit") if submit_button: st.write("## Diff:") st.text_area(generate_diff(make_prompt(text,brush_type)))