import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_NAME = "reshinthadith/BashGPTNeo" def load_model_and_tokenizer(model_name): """Adding load_model_and_tokenizer function to keep the model in the memory""" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) return tokenizer,model tokenizer,model = load_model_and_tokenizer(MODEL_NAME) MAX_TOKS = 128 MAX_NEW_TOKS = 128 def generate_text(prompt): prompt = " " + prompt + " " inputs = tokenizer(prompt, truncation=True, return_tensors="pt") output_seq = model.generate( input_ids=inputs.input_ids, max_length=MAX_TOKS, max_new_tokens=MAX_NEW_TOKS, do_sample=True, temperature=0.8, num_return_sequences=1 ) outputs = tokenizer.batch_decode(output_seq, skip_special_tokens=True) outputs = outputs[0].split("")[-1] return outputs st.set_page_config( page_title= "Code Representation Learning", initial_sidebar_state= "expanded" ) st.sidebar.title("Code Representation Learning") workflow = st.sidebar.selectbox('select a task', ['Bash Synthesis']) if workflow == "Bash Synthesis": st.title("Program Synthesis for Bash") prompt = st.text_input("Natural Language prompt ","Display all lines containing \"IP_MROUTE\" in the current kernel's compile-time config file.") button = st.button("synthesize") if button: generated_text = generate_text(prompt) st.write(generated_text)