from langchain.vectorstores import FAISS from langchain.embeddings import SentenceTransformerEmbeddings import gradio as gr import reranking from extract_keywords import init_keyword_extractor, extract_keywords embeddings = SentenceTransformerEmbeddings(model_name="multi-qa-MiniLM-L6-cos-v1") db = FAISS.load_local('faiss_qa_2023-08-20', embeddings) init_keyword_extractor() def main(query): query = query.lower() query_keywords = set(extract_keywords(query)) result_docs = db.similarity_search_with_score(query, k=20) if len(query_keywords) > 0: result_docs = list(filter(lambda doc: len(set(extract_keywords(doc[0].page_content)).intersection(query_keywords)) > 0, result_docs)) if len(result_docs) == 0: return 'Ответ не найден', 0, '' if len(result_docs) == 1: score, index = 0, 0 else: sentences = [doc[0].page_content for doc in result_docs] #print('----------------------------------------------------------------') #for doc in result_docs: # print(doc[0].metadata['articleId'], ' | ', doc[0].page_content, ' | ', doc[0].metadata['answer']) score, index = reranking.search(query, sentences) return result_docs[index][0].metadata['answer'], score, result_docs[index][0].page_content demo = gr.Interface(fn=main, inputs="text", outputs=[ gr.Textbox(label="Ответ, который будет показан клиенту"), gr.Textbox(label="Score"), gr.Textbox(label="Вопрос, по которому был найден ответ"), ]) demo.launch()