import streamlit as st import numpy as np from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import spacy left_text = st.text_input('First', 'This is a test') right_text = st.text_input('Second', 'This is another test') st.toast("Loading spacy...") nlp = spacy.load("en_core_web_sm") st.toast("Loading rufimelo/Legal-BERTimbau-sts-base...") model = SentenceTransformer("rufimelo/Legal-BERTimbau-sts-base") st.toast("Legal-BERTimbau-sts-base: computing embeddings...") embeddings = model.encode([left_text, right_text]) st.toast("Legal-BERTimbau-sts-base: computing similarity...") similarity = cosine_similarity(embeddings[: 1], embeddings[1 :]) st.info("Legal-BERTimbau-sts-base: score ->") st.dataframe(similarity) st.toast("Loading nlpaueb/legal-bert-base-uncased...") model = SentenceTransformer("nlpaueb/legal-bert-base-uncased") st.toast("legal-bert-base-uncased: computing embeddings...") embeddings = model.encode([left_text, right_text]) st.toast("legal-bert-base-uncased: computing similarity...") similarity = cosine_similarity(embeddings[: 1], embeddings[1 :]) st.info("legal-bert-base-uncased: score ->") st.dataframe(similarity)