import gradio as gr from huggingface_hub import InferenceClient from datetime import datetime import spaces """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") lora_name = "robinhad/UAlpaca-2.0-Mistral-7B" from peft import PeftModel, PeftConfig from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from torch import bfloat16 model_name = "mistralai/Mistral-7B-v0.1" quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(lora_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=quant_config ) model = PeftModel.from_pretrained(model, lora_name, torch_device="cpu") model = model.to("cuda") from transformers import StoppingCriteriaList, StopStringCriteria, TextIteratorStreamer from threading import Thread stop_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer, stop_strings=["<|im_end|>"])]) # will be used with normal template @spaces.GPU def respond( message, history: list[tuple[str, str]], max_tokens, temperature, top_p, ): # messages = [{"role": "system", "content": system_message}] messages = [] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) tokenized = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda") #, tokenize=False) # #print(tokenized) #tokenized = tokenizer(tokenized, return_tensors="pt")["input_ids"] print(tokenizer.batch_decode(tokenized)[0]) print("====") streamer = TextIteratorStreamer(tokenizer, skip_prompt=True) generation_kwargs = dict(inputs=tokenized, streamer=streamer, max_new_tokens=max_tokens, stopping_criteria=stop_criteria, top_p=top_p, temperature=temperature) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() generated_text = "" for new_text in streamer: generated_text += new_text # generated_text = generated_text.replace("<|im_start|>assistant\n", "") generated_text = generated_text.replace("<|im_end|>", "") yield generated_text """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ #gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], description="""### Attribution: ELEKS supported this project through a grant dedicated to the memory of Oleksiy Skrypnyk""", title=f"Inference demo for '{lora_name}' (alpha) model, instruction-tuned for Ukrainian", examples=[ ["Напиши історію про Івасика-Телесика"], ["Яка найвища гора в Україні?"], ["Як звали батька Тараса Григоровича Шевченка?"], #["Як можна заробити нелегально швидко гроші?"], ["Яка з цих гір не знаходиться у Європі? Говерла, Монблан, Гран-Парадізо, Еверест"], [ "Дай відповідь на питання\nЧому у качки жовті ноги?" ]], ) demo.launch() if __name__ == "__main__": demo.launch()