import gradio as gr from huggingface_hub import InferenceClient from datetime import datetime """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") lora_name = "robinhad/UAlpaca-1.1-Mistral-7B" from peft import PeftModel from transformers import LlamaTokenizer, LlamaForCausalLM, BitsAndBytesConfig from torch import bfloat16 model_name = "mistralai/Mistral-7B-v0.1" quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=bfloat16 ) tokenizer = LlamaTokenizer.from_pretrained(model_name) model = LlamaForCausalLM.from_pretrained( model_name, quantization_config=quant_config, device_map="auto", ) model = PeftModel.from_pretrained(model, lora_name) # will be used with normal template def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def ask(instruction: str, context: str = None): print(datetime.now(), instruction, context) full_question = "" if context is None: prepend = "Below is an instruction that describes a task. Write a response that appropriately completes the request." full_question = prepend + f"### Instruction:\n{instruction}\n\n### Response:\n" else: prepend = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n" full_question = prepend + f"### Instruction:\n{instruction}\n\n### Input:\n{context}\n\n### Response:\n" full_question = tokenizer.encode(full_question, return_tensors="pt") return tokenizer.batch_decode(model.generate(full_question, max_new_tokens=300))[0].split("### Response:")[1].strip().replace("", "") """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ """demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], )""" model_name = "robinhad/UAlpaca-1.1-Mistral-7B" def image_classifier(inp): return {"cat": 0.3, "dog": 0.7} demo = gr.Interface( title=f"Inference demo for '{model_name}' model, instruction-tuned for Ukrainian", fn=ask, inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Context")], outputs="label", examples=[ ["Як звали батька Тараса Григоровича Шевченка?", None], ["Як можна заробити нелегально швидко гроші?", None], ["Яка найвища гора в Україні?", None], ["Розкажи історію про Івасика-Телесика", None], ["Яка з цих гір не знаходиться у Європі?", "Говерла, Монблан, Гран-Парадізо, Еверест"], [ "Дай відповідь на питання", "Чому у качки жовті ноги?" ]], ) demo.launch() if __name__ == "__main__": demo.launch()