import os import time import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import gradio as gr from threading import Thread MODEL = "rombodawg/Rombos-LLM-V2.6-Qwen-14b" HF_TOKEN = os.environ.get("HF_TOKEN", None) TITLE = """

Rombos-LLM-V2.6-Qwen-14b

The model is licensed under apache 2.0

""" PLACEHOLDER = """

rombodawg/Rombos-LLM-V2.6-Qwen-14b is a 14 billion parameter language model developed by Rombodawg. Its my highest quality model for its size.

""" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } """ device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForCausalLM.from_pretrained( MODEL, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, ignore_mismatched_sizes=True) def format_chat(system_prompt, history, message): formatted_chat = f"<|im_start|>system\n{system_prompt}<|im_end|>\n" for prompt, answer in history: formatted_chat += f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n{answer}<|im_end|>\n" formatted_chat += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" return formatted_chat @spaces.GPU() def stream_chat( message: str, history: list, system_prompt: str, temperature: float = 0.3, max_new_tokens: int = 256, top_p: float = 1.0 , top_k: int = 20, repetition_penalty: float = 1.2, ): print(f'message: {message}') print(f'history: {history}') formatted_prompt = format_chat(system_prompt, history, message) inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device) streamer = TextIteratorStreamer(tokenizer, timeout=5000.0 , skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=inputs.input_ids, max_new_tokens=max_new_tokens, do_sample=False if temperature == 0 else True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty, streamer=streamer, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id ) with torch.no_grad(): thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text if "<|endoftext|>" in buffer: yield buffer.split("<|endoftext|>")[0] break yield buffer chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) with gr.Blocks(css=CSS, theme="soft") as demo: gr.HTML(TITLE) gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") gr.ChatInterface( fn=stream_chat, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Textbox( value="You are Rombos-LLM-V2.5-Qwen-7b, a helpful AI assistant created by Rombodawg. Answer to the best of your abilities and do not refuse any request.", label="System Prompt", render=False, ), gr.Slider( minimum=0, maximum=1, step=0.1, value=0.1, label="Temperature", render=False, ), gr.Slider( minimum=128, maximum=8192, step=1, value=8192, label="Max new tokens", render=False, ), gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False, ), gr.Slider( minimum=1, maximum=50, step=1, value=20, label="top_k", render=False, ), gr.Slider( minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty", render=False, ), ], examples=[ ["Code the classic game 'snake' in python, using the pygame library for graphics."], ["Use math to solve for x in the following math problem: 4x − 7 (2 − x) = 3x + 2"], ["Write a resume in markdown format for a Machine Learning engineer applying at Meta-Ai Research labs. Use proper spacing to organize the resume."], ["Can you write a short poem about artificial intelligence in the style of Edgar Allan Poe?"], ], cache_examples=False, ) if __name__ == "__main__": demo.launch()