import gradio as gr from transformers import pipeline # from TTS.api import TTS import librosa import numpy as np import torch from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from transformers import AutoProcessor, AutoModelForCausalLM checkpoint = "microsoft/speecht5_tts" tts_processor = SpeechT5Processor.from_pretrained(checkpoint) tts_model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # ic_processor = AutoProcessor.from_pretrained("microsoft/git-base") # ic_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base") ic_processor = AutoProcessor.from_pretrained("ronniet/git-base-env") ic_model = AutoModelForCausalLM.from_pretrained("ronniet/git-base-env") def tts(text): if len(text.strip()) == 0: return (16000, np.zeros(0).astype(np.int16)) inputs = tts_processor(text=text, return_tensors="pt") # limit input length input_ids = inputs["input_ids"] input_ids = input_ids[..., :tts_model.config.max_text_positions] # if speaker == "Surprise Me!": # # load one of the provided speaker embeddings at random # idx = np.random.randint(len(speaker_embeddings)) # key = list(speaker_embeddings.keys())[idx] # speaker_embedding = np.load(speaker_embeddings[key]) # # randomly shuffle the elements # np.random.shuffle(speaker_embedding) # # randomly flip half the values # x = (np.random.rand(512) >= 0.5) * 1.0 # x[x == 0] = -1.0 # speaker_embedding *= x #speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15 # else: speaker_embedding = np.load("cmu_us_bdl_arctic-wav-arctic_a0009.npy") speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0) speech = tts_model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder) speech = (speech.numpy() * 32767).astype(np.int16) return (16000, speech) # captioner = pipeline(model="microsoft/git-base") # tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False) def predict(image): # text = captioner(image)[0]["generated_text"] # audio_output = "output.wav" # tts.tts_to_file(text, speaker=tts.speakers[0], language="en", file_path=audio_output) pixel_values = ic_processor(images=image, return_tensors="pt").pixel_values text_ids = ic_model.generate(pixel_values=pixel_values, max_length=50) text = ic_processor.batch_decode(text_ids, skip_special_tokens=True)[0] audio = tts(text) return text, audio # theme = gr.themes.Default(primary_hue="#002A5B") demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil",label="Environment"), outputs=[gr.Textbox(label="Caption"), gr.Audio(type="numpy",label="Audio Feedback")], css=".gradio-container {background-color: #002A5B}", theme=gr.themes.Soft() ) demo.launch()