# -*- coding: utf-8 -*- """gradio_deploy.ipynb Automatically generated by Colaboratory. """ import os import gradio from PIL import Image from timeit import default_timer as timer from tensorflow import keras import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline import numpy as np loaded_model = AutoModelForSequenceClassification.from_pretrained("runaksh/ResumeClassification_distilBERT") loaded_tokenizer = AutoTokenizer.from_pretrained("runaksh/ResumeClassification_distilBERT") # Function for class prediction def predict(sample, validate=True): classifier = pipeline("text-classification", model=loaded_model, tokenizer=loaded_tokenizer) pred = classifier(sample)[0]['label'] return pred title = "Categorizing the Resumes" description = "Enter the Resume you want to categorize" # Gradio elements # Input from user in_prompt = gradio.components.Textbox(lines=2, label='Enter the Resume you want to classify') # Output response out_response = gradio.components.Textbox(label='Category') # Gradio interface to generate UI link iface = gradio.Interface(fn=predict, inputs = in_prompt, outputs = out_response ) iface.launch(debug = True)