import argparse import json import os import shutil from collections import defaultdict from tempfile import TemporaryDirectory from typing import Dict, List, Optional, Set, Tuple import torch from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download from huggingface_hub.file_download import repo_folder_name from safetensors.torch import _find_shared_tensors, _is_complete, load_file, save_file COMMIT_DESCRIPTION = """ This is an automated PR created with https://huggingface.co/spaces/safetensors/convert This new file is equivalent to `pytorch_model.bin` but safe in the sense that no arbitrary code can be put into it. These files also happen to load much faster than their pytorch counterpart: https://colab.research.google.com/github/huggingface/notebooks/blob/main/safetensors_doc/en/speed.ipynb The widgets on your model page will run using this model even if this is not merged making sure the file actually works. If you find any issues: please report here: https://huggingface.co/spaces/safetensors/convert/discussions Feel free to ignore this PR. """ ConversionResult = Tuple[List["CommitOperationAdd"], List[Tuple[str, "Exception"]]] def _remove_duplicate_names( state_dict: Dict[str, torch.Tensor], *, preferred_names: List[str] = None, discard_names: List[str] = None, ) -> Dict[str, List[str]]: if preferred_names is None: preferred_names = [] preferred_names = set(preferred_names) if discard_names is None: discard_names = [] discard_names = set(discard_names) shareds = _find_shared_tensors(state_dict) to_remove = defaultdict(list) for shared in shareds: complete_names = set([name for name in shared if _is_complete(state_dict[name])]) if not complete_names: if len(shared) == 1: # Force contiguous name = list(shared)[0] state_dict[name] = state_dict[name].clone() complete_names = {name} else: raise RuntimeError( f"Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue." ) keep_name = sorted(list(complete_names))[0] # Mecanism to preferentially select keys to keep # coming from the on-disk file to allow # loading models saved with a different choice # of keep_name preferred = complete_names.difference(discard_names) if preferred: keep_name = sorted(list(preferred))[0] if preferred_names: preferred = preferred_names.intersection(complete_names) if preferred: keep_name = sorted(list(preferred))[0] for name in sorted(shared): if name != keep_name: to_remove[keep_name].append(name) return to_remove def get_discard_names(model_id: str, revision: Optional[str], folder: str, token: Optional[str]) -> List[str]: try: import json import transformers config_filename = hf_hub_download( model_id, revision=revision, filename="config.json", token=token, cache_dir=folder ) with open(config_filename, "r") as f: config = json.load(f) architecture = config["architectures"][0] class_ = getattr(transformers, architecture) # Name for this varible depends on transformers version. discard_names = getattr(class_, "_tied_weights_keys", []) except Exception: discard_names = [] return discard_names class AlreadyExists(Exception): pass def check_file_size(sf_filename: str, pt_filename: str): sf_size = os.stat(sf_filename).st_size pt_size = os.stat(pt_filename).st_size if (sf_size - pt_size) / pt_size > 0.01: raise RuntimeError( f"""The file size different is more than 1%: - {sf_filename}: {sf_size} - {pt_filename}: {pt_size} """ ) def rename(pt_filename: str) -> str: filename, ext = os.path.splitext(pt_filename) local = f"{filename}.safetensors" local = local.replace("pytorch_model", "model") return local def convert_multi( model_id: str, *, revision=Optional[str], folder: str, token: Optional[str], discard_names: List[str] ) -> ConversionResult: filename = hf_hub_download( repo_id=model_id, revision=revision, filename="pytorch_model.bin.index.json", token=token, cache_dir=folder ) with open(filename, "r") as f: data = json.load(f) filenames = set(data["weight_map"].values()) local_filenames = [] for filename in filenames: pt_filename = hf_hub_download(repo_id=model_id, filename=filename, token=token, cache_dir=folder) sf_filename = rename(pt_filename) sf_filename = os.path.join(folder, sf_filename) convert_file(pt_filename, sf_filename, discard_names=discard_names) local_filenames.append(sf_filename) index = os.path.join(folder, "model.safetensors.index.json") with open(index, "w") as f: newdata = {k: v for k, v in data.items()} newmap = {k: rename(v) for k, v in data["weight_map"].items()} newdata["weight_map"] = newmap json.dump(newdata, f, indent=4) local_filenames.append(index) operations = [ CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames ] errors: List[Tuple[str, "Exception"]] = [] return operations, errors def convert_single( model_id: str, *, revision: Optional[str], folder: str, token: Optional[str], discard_names: List[str] ) -> ConversionResult: pt_filename = hf_hub_download( repo_id=model_id, revision=revision, filename="pytorch_model.bin", token=token, cache_dir=folder ) sf_name = "model.safetensors" sf_filename = os.path.join(folder, sf_name) convert_file(pt_filename, sf_filename, discard_names) operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)] errors: List[Tuple[str, "Exception"]] = [] return operations, errors def convert_file( pt_filename: str, sf_filename: str, discard_names: List[str], ): loaded = torch.load(pt_filename, map_location="cpu", weights_only=True) if "state_dict" in loaded: loaded = loaded["state_dict"] to_removes = _remove_duplicate_names(loaded, discard_names=discard_names) metadata = {"format": "pt"} for kept_name, to_remove_group in to_removes.items(): for to_remove in to_remove_group: if to_remove not in metadata: metadata[to_remove] = kept_name del loaded[to_remove] # Force tensors to be contiguous loaded = {k: v.contiguous() for k, v in loaded.items()} dirname = os.path.dirname(sf_filename) os.makedirs(dirname, exist_ok=True) save_file(loaded, sf_filename, metadata=metadata) check_file_size(sf_filename, pt_filename) reloaded = load_file(sf_filename) for k in loaded: pt_tensor = loaded[k] sf_tensor = reloaded[k] if not torch.equal(pt_tensor, sf_tensor): raise RuntimeError(f"The output tensors do not match for key {k}") def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]]) -> str: errors = [] for key in ["missing_keys", "mismatched_keys", "unexpected_keys"]: pt_set = set(pt_infos[key]) sf_set = set(sf_infos[key]) pt_only = pt_set - sf_set sf_only = sf_set - pt_set if pt_only: errors.append(f"{key} : PT warnings contain {pt_only} which are not present in SF warnings") if sf_only: errors.append(f"{key} : SF warnings contain {sf_only} which are not present in PT warnings") return "\n".join(errors) def previous_pr(api: "HfApi", model_id: str, pr_title: str, revision=Optional[str]) -> Optional["Discussion"]: try: revision_commit = api.model_info(model_id, revision=revision).sha discussions = api.get_repo_discussions(repo_id=model_id) except Exception: return None for discussion in discussions: if discussion.status in {"open", "closed"} and discussion.is_pull_request and discussion.title == pr_title: commits = api.list_repo_commits(model_id, revision=discussion.git_reference) if revision_commit == commits[1].commit_id: return discussion return None def convert_generic( model_id: str, *, revision=Optional[str], folder: str, filenames: Set[str], token: Optional[str] ) -> ConversionResult: operations = [] errors = [] extensions = set([".bin", ".ckpt"]) for filename in filenames: prefix, ext = os.path.splitext(filename) if ext in extensions: pt_filename = hf_hub_download( model_id, revision=revision, filename=filename, token=token, cache_dir=folder ) dirname, raw_filename = os.path.split(filename) if raw_filename == "pytorch_model.bin": # XXX: This is a special case to handle `transformers` and the # `transformers` part of the model which is actually loaded by `transformers`. sf_in_repo = os.path.join(dirname, "model.safetensors") else: sf_in_repo = f"{prefix}.safetensors" sf_filename = os.path.join(folder, sf_in_repo) try: convert_file(pt_filename, sf_filename, discard_names=[]) operations.append(CommitOperationAdd(path_in_repo=sf_in_repo, path_or_fileobj=sf_filename)) except Exception as e: errors.append((pt_filename, e)) return operations, errors def convert( api: "HfApi", model_id: str, revision: Optional[str] = None, force: bool = False ) -> Tuple["CommitInfo", List[Tuple[str, "Exception"]]]: pr_title = "Adding `safetensors` variant of this model" info = api.model_info(model_id, revision=revision) filenames = set(s.rfilename for s in info.siblings) with TemporaryDirectory() as d: folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) os.makedirs(folder) new_pr = None try: operations = None pr = previous_pr(api, model_id, pr_title, revision=revision) library_name = getattr(info, "library_name", None) if any(filename.endswith(".safetensors") for filename in filenames) and not force: raise AlreadyExists(f"Model {model_id} is already converted, skipping..") elif pr is not None and not force: url = f"https://huggingface.co/{model_id}/discussions/{pr.num}" new_pr = pr raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}") elif library_name == "transformers": discard_names = get_discard_names(model_id, revision=revision, folder=folder, token=api.token) if "pytorch_model.bin" in filenames: operations, errors = convert_single( model_id, revision=revision, folder=folder, token=api.token, discard_names=discard_names ) elif "pytorch_model.bin.index.json" in filenames: operations, errors = convert_multi( model_id, revision=revision, folder=folder, token=api.token, discard_names=discard_names ) else: raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert") else: operations, errors = convert_generic( model_id, revision=revision, folder=folder, filenames=filenames, token=api.token ) if operations: new_pr = api.create_commit( repo_id=model_id, revision=revision, operations=operations, commit_message=pr_title, commit_description=COMMIT_DESCRIPTION, create_pr=True, ) print(f"Pr created at {new_pr.pr_url}") else: print("No files to convert") finally: shutil.rmtree(folder) return new_pr, errors if __name__ == "__main__": DESCRIPTION = """ Simple utility tool to convert automatically some weights on the hub to `safetensors` format. It is PyTorch exclusive for now. It works by downloading the weights (PT), converting them locally, and uploading them back as a PR on the hub. """ parser = argparse.ArgumentParser(description=DESCRIPTION) parser.add_argument( "model_id", type=str, help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`", ) parser.add_argument( "--revision", type=str, help="The revision to convert", ) parser.add_argument( "--force", action="store_true", help="Create the PR even if it already exists of if the model was already converted.", ) parser.add_argument( "-y", action="store_true", help="Ignore safety prompt", ) args = parser.parse_args() model_id = args.model_id api = HfApi() if args.y: txt = "y" else: txt = input( "This conversion script will unpickle a pickled file, which is inherently unsafe. If you do not trust this file, we invite you to use" " https://huggingface.co/spaces/safetensors/convert or google colab or other hosted solution to avoid potential issues with this file." " Continue [Y/n] ?" ) if txt.lower() in {"", "y"}: commit_info, errors = convert(api, model_id, revision=args.revision, force=args.force) string = f""" ### Success 🔥 Yay! This model was successfully converted and a PR was open using your token, here: [{commit_info.pr_url}]({commit_info.pr_url}) """ if errors: string += "\nErrors during conversion:\n" string += "\n".join( f"Error while converting {filename}: {e}, skipped conversion" for filename, e in errors ) print(string) else: print(f"Answer was `{txt}` aborting.")