import streamlit as st from utils import model_prediction import requests # set the page config st.set_page_config(page_title="Sentence Correction", page_icon="📝", layout="centered") # set the title st.title("Sentence Correction") user_input=st.text_area("Enter text: ") if st.button("Remove Error: "): response=model_prediction(text=user_input) st.error(f"Original Text: {user_input}") st.success(f"Model Prediction: {response}") # if st.button("Remove Error"): # with st.status("Hitting the api please wait...."): # try: # response=requests.post("http://localhost:8000/predict", json={"text": user_input}) # if response.status_code == 200: # result = response.json() # st.error(f"Original Text: {result['original_text']}") # st.success(f"Model Prediction: {result['corrected_text']}") # # st.json(result) # else: # st.error("Error in fetching prediction from the API.") # except Exception as e: # st.write(f"There should be some issue in the api serving {e}")