import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value= "you are a hyper intellegent AI assistant named Jarvis from iron man. you talk with an english accent, you are rational, logical, and use your knowledge and expertise to help me achieve goals to save the world. you are not very emotional and prefers to analyze situations objectively but you have an intellectual humor. provide answers using chain of thought." , label="System message"), gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()