import asyncio import re from pydantic_ai.result import ResultData, RunResult import streamlit as st from pydantic_ai import Agent,RunContext, Tool from pydantic_ai.models.groq import GroqModel import nest_asyncio from pydantic_ai.messages import ModelMessage import pdfplumber import os from streamlit_pdf_viewer import pdf_viewer from dataclasses import dataclass #api_key #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 api_key = os.getenv("api_key") data = [] model = GroqModel("llama3-groq-70b-8192-tool-use-preview", api_key = api_key) async def resume_AI(data): agent = Agent(model=model, system_prompt=( "You are an expert in making resume", "You have access to the resume text", "Also return data in markdown formate" ) ) result = agent.run_sync(user_prompt=f"Improve this resume: {data}") print(result.data) def extract_data(feed): with pdfplumber.open(feed) as pdf: pages = pdf.pages for p in pages: data.append(p.extract_text()) return None def ai_resume(data): asyncio.run(resume_AI(data=data)) def main(): uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf") if uploaded_file is not None: extract_data(uploaded_file) binary_data = uploaded_file.getvalue() pdf_viewer(input=binary_data, width=700) if st.button("Improve Resume"): ai_resume(data) if __name__ == '__main__': import asyncio nest_asyncio.apply() main()