import ctranslate2 from transformers import AutoTokenizer import gradio as gr def generate_prompt(history): prompt = "" for chain in history[:-1]: prompt += f": {chain[0]}\n: {chain[1]}\n" prompt += f": {history[-1][0]}\n:" tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)) return tokens def generate(question): history = [[question, ""]] tokens = generate_prompt(history) results = translator.translate_batch( [tokens], beam_size=1, max_decoding_length = 256, repetition_penalty = 1.8, ) answer = tokenizer.convert_tokens_to_string(results[0].hypotheses[0]) return answer translator = ctranslate2.Translator("model") tokenizer = AutoTokenizer.from_pretrained("DKYoon/mt5-xl-lm-adapt") end_token = "" end_token_id = tokenizer.encode(end_token)[0] demo = gr.Interface(fn=generate, description="Space by @theodotus. Source: https://huggingface.co/spaces/theodotus/pythia-uk", inputs="text", outputs="text") demo.queue(1) if __name__ == "__main__": demo.launch()