import gradio as gr import pandas as pd from huggingface_hub.hf_api import create_repo, upload_folder, upload_file, HfApi from huggingface_hub.repository import Repository import subprocess import os import tempfile from uuid import uuid4 import pickle import sweetviz as sv import dabl import re def analyze_datasets(dataset, dataset_name, token, column=None, pairwise="off"): df = pd.read_csv(dataset.name) username = HfApi().whoami(token=token)["name"] if column is not None: analyze_report = sv.analyze(df, target_feat=column, pairwise_analysis=pairwise) else: analyze_report = sv.analyze(df, pairwise_analysis=pairwise) analyze_report.show_html('./index.html', open_browser=False) repo_url = create_repo(f"{username}/{dataset_name}", repo_type = "space", token = token, space_sdk = "static", private=False) upload_file(path_or_fileobj ="./index.html", path_in_repo = "./", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token) readme = f"---\ntitle: {dataset_name}\nemoji: ✨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---" with open("README.md", "w+") as f: f.write(readme) upload_file(path_or_fileobj ="./README.md", path_in_repo = "README.md", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token) return f"Your dataset report will be ready at {repo_url}" from sklearn.utils import estimator_html_repr def extract_estimator_config(model): hyperparameter_dict = model.get_params(deep=True) table = "| Hyperparameters | Value |\n| :-- | :-- |\n" for hyperparameter, value in hyperparameter_dict.items(): table += f"| {hyperparameter} | {value} |\n" return table def detect_training(df, column): if dabl.detect_types(df)["continuous"][column] or dabl.detect_types(df)["dirty_float"][column]: trainer = dabl.SimpleRegressor() elif dabl.detect_types(df)["categorical"][column] or dabl.detect_types(df)["low_card_int"][column] or dabl.detect_types(df)["free_string"][column]: trainer = dabl.SimpleClassifier() return trainer def edit_types(df): types = dabl.detect_types(df) low_cardinality = types[types["low_card_int"] == True].index.tolist() dirty_float = types[types["dirty_float"] == True].index.tolist() type_hints = {} for col in low_cardinality: type_hints[col] = "categorical" for col in dirty_float: type_hints[col] = "continuous" df_clean = dabl.clean(df, type_hints=type_hints) return df_clean def train_baseline(dataset, dataset_name, token, column): df = pd.read_csv(dataset.name) df_clean = edit_types(df) fc = detect_training(df_clean, column) X = df_clean.drop(column, axis = 1) y = df_clean[column] with tempfile.TemporaryDirectory() as tmpdirname: from contextlib import redirect_stdout with open(f'{tmpdirname}/logs.txt', 'w') as f: with redirect_stdout(f): print('Logging training') fc.fit(X, y) username = HfApi().whoami(token=token)["name"] repo_url = create_repo(repo_id = f"{username}/{dataset_name}", token = token) readme = f"---\nlicense: apache-2.0\nlibrary_name: sklearn\n---\n\n" readme += f"## Baseline Model trained on {dataset_name} to predict {column}\n\n" readme+="**Metrics of the best model:**\n\n" for elem in str(fc.current_best_).split("\n"): readme+= f"{elem}\n\n" readme+= "\n\n**See model plot below:**\n\n" readme+= re.sub(r"\n\s+", "", str(estimator_html_repr(fc.est_))) readme+= "\n\nThis model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain).\n\n" with open(f"{tmpdirname}/README.md", "w+") as f: f.write(readme) with open(f"{tmpdirname}/clf.pkl", mode="bw") as f: pickle.dump(fc, file=f) upload_folder(repo_id =f"{username}/{dataset_name}", folder_path=tmpdirname, repo_type = "model", token=token, path_in_repo="./") return f"Your model will be ready at {repo_url}" with gr.Blocks() as demo: main_title = gr.Markdown("""# Baseline Trainer 🪄🌟✨""") main_desc = gr.Markdown("""This app trains a baseline model for a given dataset and pushes it to your Hugging Face Hub Profile with a model card. For better results, use [AutoTrain](https://huggingface.co/autotrain).""") with gr.Tabs(): with gr.TabItem("Baseline Trainer") as baseline_trainer: with gr.Row(): with gr.Column(): title = gr.Markdown(""" ## Train a supervised baseline model""") description = gr.Markdown("This app trains a model and pushes it to your Hugging Face Hub Profile.") dataset = gr.File(label = "Dataset") column = gr.Text(label = "Enter target variable:") pushing_desc = gr.Markdown("This app needs your Hugging Face Hub token and a unique name for your dataset report.") dataset_name = gr.Text(label = "Enter dataset name:") token = gr.Textbox(label = "Your Hugging Face Token") inference_run = gr.Button("Train") inference_progress = gr.StatusTracker(cover_container=True) outcome = gr.outputs.Textbox(label = "Progress") inference_run.click( train_baseline, inputs=[dataset, dataset_name, token, column], outputs=outcome, status_tracker=inference_progress, ) with gr.TabItem("Analyze") as analyze: with gr.Row(): with gr.Column(): title = gr.Markdown(""" ## Analyze Dataset """) description = gr.Markdown("Analyze a dataset or predictive variables against a target variable in a dataset (enter a column name to column section if you want to compare against target value). You can also do pairwise analysis, but it has quadratic complexity.") dataset = gr.File(label = "Dataset") column = gr.Text(label = "Compare dataset against a target variable (Optional)") pairwise = gr.Radio(["off", "on"], label = "Enable pairwise analysis") token = gr.Textbox(label = "Your Hugging Face Token") dataset_name = gr.Textbox(label = "Dataset Name") pushing_desc = gr.Markdown("This app needs your Hugging Face Hub token and a unique repository name for your dataset report.") inference_run = gr.Button("Infer") inference_progress = gr.StatusTracker(cover_container=True) outcome = gr.outputs.Textbox() inference_run.click( analyze_datasets, inputs=[dataset, dataset_name, token, column, pairwise], outputs=outcome, status_tracker=inference_progress, ) demo.launch(debug=True)