import gradio as gr from transformers import pipeline import torch # Define the prompt template MAGICODER_PROMPT = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions. @@ Instruction {instruction} @@ Response """ # Load the Magicoder model generator = pipeline( model="ise-uiuc/Magicoder-S-DS-6.7B", task="text-generation", torch_dtype=torch.bfloat16, device_map="auto", ) # Define the function to use with Gradio def generate_response(instruction): prompt = MAGICODER_PROMPT.format(instruction=instruction) result = generator(prompt, max_length=2048, num_return_sequences=1, temperature=0.0) return result[0]["generated_text"] # Create the Gradio interface demo = gr.Interface(fn=generate_response, inputs="text", outputs="text") # Launch the interface demo.launch(share=True)